Advertisement

Journal of Applied Electrochemistry

, Volume 45, Issue 3, pp 235–244 | Cite as

Compatibility of LiMn2O4 cathode with electrolyte based on low-viscosity ether-functionalized pyrazolium ionic liquid

  • Jianhao Zhang
  • Shaohua Fang
  • Long Qu
  • Yide Jin
  • Li Yang
  • Shin-ichi Hirano
Research Article
Part of the following topical collections:
  1. Batteries

Abstract

One new ether-functionalized ionic liquid (IL) composed of pyrazolium cation with one 2-ethoxyethyl group and bis(trifluoromethylsulfonyl)imide anion was synthesized and characterized. The IL showed the lowest viscosity among all the reported pyrazolium ILs, and the value was 38.9 mPa s at room temperature. The conductivity of the IL was 3.48 mS cm−1 at 25 °C, and its electrochemical window was 4.4 V. Cycling performance of symmetric lithium cell was investigated for the IL electrolyte with 0.6 mol kg−1 of LiTFSI. Li/LiMn2O4 cell using the IL electrolyte owned good cycling and rate performances, and it was found for the first time that LiMn2O4 cathode was compatible with electrolyte based on ether-functionalized IL. By the characterizations of X-ray diffraction and scanning electron microscopy for fresh and cycled LiMn2O4 electrodes, it was inferred that the slow dissolution of LiMn2O4 in the IL electrolyte might happen during the charge–discharge processes.

Keywords

Ionic liquid Pyrazolium cation Lithium battery Electrolyte 

Notes

Acknowledgments

The authors thank the Research Center of Analysis and Measurement of Shanghai Jiao Tong University for the help in NMR characterization. This work is financially supported by the National Natural Science Foundation of China (Grants No. 21103108, 21173148 and 21373136).

References

  1. 1.
    Dupont J, De Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692CrossRefGoogle Scholar
  2. 2.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083CrossRefGoogle Scholar
  3. 3.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629CrossRefGoogle Scholar
  4. 4.
    Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302(5646):792–793CrossRefGoogle Scholar
  5. 5.
    Forsyth SA, Pringle JM, MacFarlane DR (2004) Ionic liquids—an overview. Aust J Chem 57(2):113–119CrossRefGoogle Scholar
  6. 6.
    Macfarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7(1):232–250CrossRefGoogle Scholar
  7. 7.
    Jin J, Li HH, Wei JP, Bian XK, Zhou Z, Yan J (2009) Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochem Commun 11(7):1500–1503CrossRefGoogle Scholar
  8. 8.
    Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242CrossRefGoogle Scholar
  9. 9.
    Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)—novel electrolyte base for Li battery. Electrochem Commun 5(7):594–598CrossRefGoogle Scholar
  10. 10.
    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRefGoogle Scholar
  11. 11.
    Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609CrossRefGoogle Scholar
  12. 12.
    Zheng H, Zhang H, Fu Y, Abe T, Ogumi Z (2005) Temperature effects on the electrochemical behavior of spinel LiMn2O4 in quaternary ammonium-based ionic liquid electrolyte. J Phys Chem B 109(28):13676–13684CrossRefGoogle Scholar
  13. 13.
    Borgel V, Markevich E, Aurbach D, Semrau G, Schmidt M (2009) On the application of ionic liquids for rechargeable Li batteries: high voltage systems. J Power Sources 189:331–336CrossRefGoogle Scholar
  14. 14.
    Reiter J, Nádherná M, Dominko R (2012) Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sources 205:402–407CrossRefGoogle Scholar
  15. 15.
    Egashira M, Kanetomo A, Yoshimoto N, Morita M (2010) Electrode properties in mixed imidazolium ionic liquid electrolyte. Electrochemistry 78(5):370–374CrossRefGoogle Scholar
  16. 16.
    Egashira M, Todo H, Yoshimoto N, Morita M, Yamaki JI (2007) Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J Power Sources 174(2):560–564CrossRefGoogle Scholar
  17. 17.
    Matsui Y, Kawaguchi S, Sugimoto T, Kikuta M, Higashizaki T, Kono M, Yamagata M, Ishikawa M (2012) Charge-discharge characteristics of a LiNi1/3Mn1/3Co1/3O2 cathode in FSI-based ionic liquids. Electrochemistry 80(10):808–811CrossRefGoogle Scholar
  18. 18.
    Davis JH Jr (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077CrossRefGoogle Scholar
  19. 19.
    Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12(8):2122–2130CrossRefGoogle Scholar
  20. 20.
    Chen ZJ, Xue T, Lee JM (2012) What causes the low viscosity of ether-functionalized ionic liquids? its dependence on the increase of free volume. RSC Adv 2(28):10564–10574CrossRefGoogle Scholar
  21. 21.
    Monteiro MJ, Camilo FF, Ribeiro MCC, Torresi RM (2010) Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. J Phys Chem B 114(39):12488–12494CrossRefGoogle Scholar
  22. 22.
    Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11(2):752–766CrossRefGoogle Scholar
  23. 23.
    Fang S, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56(12):4663–4671CrossRefGoogle Scholar
  24. 24.
    Chen Z, Liu S, Li Z, Zhang Q, Deng Y (2011) Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J Chem 35(8):1596–1606CrossRefGoogle Scholar
  25. 25.
    Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9(9):2353–2358CrossRefGoogle Scholar
  26. 26.
    Zhou ZB, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12(8):2196–2212CrossRefGoogle Scholar
  27. 27.
    Fei Z, Ang WH, Zhao D, Scopelliti R, Zvereva EE, Katsyuba SA, Dyson PJ (2007) Revisiting ether-derivatized imidazolium-based ionic liquids. J Phys Chem B 111(34):10095–10108CrossRefGoogle Scholar
  28. 28.
    Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-Alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10(24):6581–6591CrossRefGoogle Scholar
  29. 29.
    Fang SH, Yang L, Wang JX, Li MT, Tachibana K, Kamijima K (2009) Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochim Acta 54(17):4269–4273CrossRefGoogle Scholar
  30. 30.
    Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2011) Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery. J Power Sources 196(24):10658–10666CrossRefGoogle Scholar
  31. 31.
    Seki S, Kobayashi T, Serizawa N, Kobayashi Y, Takei K, Miyashiro H, Hayamizu K, Tsuzuki S, Mitsugi T, Umebayashi Y, Watanabe M (2010) Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries. J Power Sources 195(18):6207–6211CrossRefGoogle Scholar
  32. 32.
    Chai M, Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2012) Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochim Acta 66:67–74CrossRefGoogle Scholar
  33. 33.
    Chai M, Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2012) Low-viscosity ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. J Power Sources 216:323–329CrossRefGoogle Scholar
  34. 34.
    Egashira M, Kanetomo A, Yoshimoto N, Morita M (2011) Charge-discharge rate of spinel lithium manganese oxide and olivine lithium iron phosphate in ionic liquid-based electrolytes. J Power Sources 196(15):6419–6424CrossRefGoogle Scholar
  35. 35.
    Swiderska-Mocek A (2014) Properties of LiMn2O4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone. J Solid State Electrochem 18(4):1077–1085CrossRefGoogle Scholar
  36. 36.
    Lewandowski A, Świderska-Mocek A, Acznik I (2010) Properties of LiMn2O4 cathode in electrolyte based on N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 55(6):1990–1994CrossRefGoogle Scholar
  37. 37.
    Fang S, Zhang Z, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196(13):5637–5644CrossRefGoogle Scholar
  38. 38.
    Kärnä M, Lahtinen M, Valkonen J (2009) Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality. J Mol Struct 922(1–3):64–76CrossRefGoogle Scholar
  39. 39.
    Jin Y, Fang S, Chai M, Yang L, Hirano SI (2012) Ether-functionalized trialkylimidazolium ionic liquids: synthesis, characterization, and properties. Ind Eng Chem Res 51(34):11011–11020CrossRefGoogle Scholar
  40. 40.
    Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 8:922–923CrossRefGoogle Scholar
  41. 41.
    Fang S, Yang L, Wei C, Peng C, Tachibana K, Kamijima K (2007) Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem Commun 9(11):2696–2702CrossRefGoogle Scholar
  42. 42.
    Matsumoto H, Sakaebe H, Tatsumi K (2005) Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources 146(1–2):45–50CrossRefGoogle Scholar
  43. 43.
    Best AS, Bhatt AI, Hollenkamp AF (2010) Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J Electrochem Soc 157(8):A903–A911CrossRefGoogle Scholar
  44. 44.
    Yoon H, Lane GH, Shekibi Y, Howlett PC, Forsyth M, Best AS, MacFarlane DR (2013) Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy Environ Sci 6(3):979–986CrossRefGoogle Scholar
  45. 45.
    Lane GH, Best AS, MacFarlane DR, Hollenkamp AF, Forsyth M (2010) An azo-spiro mixed ionic liquid electrolyte for lithium metal-LiFePO 4 batteries. J Electrochem Soc 157(7):A876–A884CrossRefGoogle Scholar
  46. 46.
    Basile A, Hollenkamp AF, Bhatt AI, O’Mullane AP (2013) Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem Commun 27:69–72CrossRefGoogle Scholar
  47. 47.
    Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl) imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J Electrochem Soc 157(1):A66–A74CrossRefGoogle Scholar
  48. 48.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417CrossRefGoogle Scholar
  49. 49.
    Saint J, Best AS, Hollenkamp AF, Kerr J, Shin JH, Doeff MM (2008) Compatibility of LixTiyMn1−yO2 (y = 0, 0.11) electrode materials with pyrrolidinium-based ionic liquid electrolyte systems. J Electrochem Soc 155(2):A172–A180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Hirano Institute for Materials InnovationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations