Skip to main content

Advertisement

Log in

Compatibility of LiMn2O4 cathode with electrolyte based on low-viscosity ether-functionalized pyrazolium ionic liquid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

One new ether-functionalized ionic liquid (IL) composed of pyrazolium cation with one 2-ethoxyethyl group and bis(trifluoromethylsulfonyl)imide anion was synthesized and characterized. The IL showed the lowest viscosity among all the reported pyrazolium ILs, and the value was 38.9 mPa s at room temperature. The conductivity of the IL was 3.48 mS cm−1 at 25 °C, and its electrochemical window was 4.4 V. Cycling performance of symmetric lithium cell was investigated for the IL electrolyte with 0.6 mol kg−1 of LiTFSI. Li/LiMn2O4 cell using the IL electrolyte owned good cycling and rate performances, and it was found for the first time that LiMn2O4 cathode was compatible with electrolyte based on ether-functionalized IL. By the characterizations of X-ray diffraction and scanning electron microscopy for fresh and cycled LiMn2O4 electrodes, it was inferred that the slow dissolution of LiMn2O4 in the IL electrolyte might happen during the charge–discharge processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dupont J, De Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692

    Article  CAS  Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083

    Article  CAS  Google Scholar 

  3. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629

    Article  CAS  Google Scholar 

  4. Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302(5646):792–793

    Article  Google Scholar 

  5. Forsyth SA, Pringle JM, MacFarlane DR (2004) Ionic liquids—an overview. Aust J Chem 57(2):113–119

    Article  CAS  Google Scholar 

  6. Macfarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7(1):232–250

    Article  CAS  Google Scholar 

  7. Jin J, Li HH, Wei JP, Bian XK, Zhou Z, Yan J (2009) Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochem Commun 11(7):1500–1503

    Article  CAS  Google Scholar 

  8. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242

    Article  CAS  Google Scholar 

  9. Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)—novel electrolyte base for Li battery. Electrochem Commun 5(7):594–598

    Article  CAS  Google Scholar 

  10. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    Article  CAS  Google Scholar 

  11. Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609

    Article  CAS  Google Scholar 

  12. Zheng H, Zhang H, Fu Y, Abe T, Ogumi Z (2005) Temperature effects on the electrochemical behavior of spinel LiMn2O4 in quaternary ammonium-based ionic liquid electrolyte. J Phys Chem B 109(28):13676–13684

    Article  CAS  Google Scholar 

  13. Borgel V, Markevich E, Aurbach D, Semrau G, Schmidt M (2009) On the application of ionic liquids for rechargeable Li batteries: high voltage systems. J Power Sources 189:331–336

    Article  CAS  Google Scholar 

  14. Reiter J, Nádherná M, Dominko R (2012) Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sources 205:402–407

    Article  CAS  Google Scholar 

  15. Egashira M, Kanetomo A, Yoshimoto N, Morita M (2010) Electrode properties in mixed imidazolium ionic liquid electrolyte. Electrochemistry 78(5):370–374

    Article  CAS  Google Scholar 

  16. Egashira M, Todo H, Yoshimoto N, Morita M, Yamaki JI (2007) Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J Power Sources 174(2):560–564

    Article  CAS  Google Scholar 

  17. Matsui Y, Kawaguchi S, Sugimoto T, Kikuta M, Higashizaki T, Kono M, Yamagata M, Ishikawa M (2012) Charge-discharge characteristics of a LiNi1/3Mn1/3Co1/3O2 cathode in FSI-based ionic liquids. Electrochemistry 80(10):808–811

    Article  CAS  Google Scholar 

  18. Davis JH Jr (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077

    Article  CAS  Google Scholar 

  19. Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12(8):2122–2130

    Article  CAS  Google Scholar 

  20. Chen ZJ, Xue T, Lee JM (2012) What causes the low viscosity of ether-functionalized ionic liquids? its dependence on the increase of free volume. RSC Adv 2(28):10564–10574

    Article  CAS  Google Scholar 

  21. Monteiro MJ, Camilo FF, Ribeiro MCC, Torresi RM (2010) Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. J Phys Chem B 114(39):12488–12494

    Article  CAS  Google Scholar 

  22. Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11(2):752–766

    Article  CAS  Google Scholar 

  23. Fang S, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56(12):4663–4671

    Article  CAS  Google Scholar 

  24. Chen Z, Liu S, Li Z, Zhang Q, Deng Y (2011) Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J Chem 35(8):1596–1606

    Article  CAS  Google Scholar 

  25. Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9(9):2353–2358

    Article  CAS  Google Scholar 

  26. Zhou ZB, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12(8):2196–2212

    Article  CAS  Google Scholar 

  27. Fei Z, Ang WH, Zhao D, Scopelliti R, Zvereva EE, Katsyuba SA, Dyson PJ (2007) Revisiting ether-derivatized imidazolium-based ionic liquids. J Phys Chem B 111(34):10095–10108

    Article  CAS  Google Scholar 

  28. Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-Alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10(24):6581–6591

    Article  CAS  Google Scholar 

  29. Fang SH, Yang L, Wang JX, Li MT, Tachibana K, Kamijima K (2009) Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochim Acta 54(17):4269–4273

    Article  CAS  Google Scholar 

  30. Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2011) Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery. J Power Sources 196(24):10658–10666

    Article  CAS  Google Scholar 

  31. Seki S, Kobayashi T, Serizawa N, Kobayashi Y, Takei K, Miyashiro H, Hayamizu K, Tsuzuki S, Mitsugi T, Umebayashi Y, Watanabe M (2010) Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries. J Power Sources 195(18):6207–6211

    Article  CAS  Google Scholar 

  32. Chai M, Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2012) Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochim Acta 66:67–74

    Article  CAS  Google Scholar 

  33. Chai M, Jin Y, Fang S, Yang L, Hirano SI, Tachibana K (2012) Low-viscosity ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. J Power Sources 216:323–329

    Article  CAS  Google Scholar 

  34. Egashira M, Kanetomo A, Yoshimoto N, Morita M (2011) Charge-discharge rate of spinel lithium manganese oxide and olivine lithium iron phosphate in ionic liquid-based electrolytes. J Power Sources 196(15):6419–6424

    Article  CAS  Google Scholar 

  35. Swiderska-Mocek A (2014) Properties of LiMn2O4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone. J Solid State Electrochem 18(4):1077–1085

    Article  CAS  Google Scholar 

  36. Lewandowski A, Świderska-Mocek A, Acznik I (2010) Properties of LiMn2O4 cathode in electrolyte based on N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 55(6):1990–1994

    Article  CAS  Google Scholar 

  37. Fang S, Zhang Z, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196(13):5637–5644

    Article  CAS  Google Scholar 

  38. Kärnä M, Lahtinen M, Valkonen J (2009) Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality. J Mol Struct 922(1–3):64–76

    Article  Google Scholar 

  39. Jin Y, Fang S, Chai M, Yang L, Hirano SI (2012) Ether-functionalized trialkylimidazolium ionic liquids: synthesis, characterization, and properties. Ind Eng Chem Res 51(34):11011–11020

    Article  CAS  Google Scholar 

  40. Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 8:922–923

    Article  Google Scholar 

  41. Fang S, Yang L, Wei C, Peng C, Tachibana K, Kamijima K (2007) Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem Commun 9(11):2696–2702

    Article  CAS  Google Scholar 

  42. Matsumoto H, Sakaebe H, Tatsumi K (2005) Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources 146(1–2):45–50

    Article  CAS  Google Scholar 

  43. Best AS, Bhatt AI, Hollenkamp AF (2010) Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J Electrochem Soc 157(8):A903–A911

    Article  CAS  Google Scholar 

  44. Yoon H, Lane GH, Shekibi Y, Howlett PC, Forsyth M, Best AS, MacFarlane DR (2013) Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy Environ Sci 6(3):979–986

    Article  CAS  Google Scholar 

  45. Lane GH, Best AS, MacFarlane DR, Hollenkamp AF, Forsyth M (2010) An azo-spiro mixed ionic liquid electrolyte for lithium metal-LiFePO 4 batteries. J Electrochem Soc 157(7):A876–A884

    Article  CAS  Google Scholar 

  46. Basile A, Hollenkamp AF, Bhatt AI, O’Mullane AP (2013) Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem Commun 27:69–72

    Article  CAS  Google Scholar 

  47. Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl) imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J Electrochem Soc 157(1):A66–A74

    Article  CAS  Google Scholar 

  48. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  49. Saint J, Best AS, Hollenkamp AF, Kerr J, Shin JH, Doeff MM (2008) Compatibility of LixTiyMn1−yO2 (y = 0, 0.11) electrode materials with pyrrolidinium-based ionic liquid electrolyte systems. J Electrochem Soc 155(2):A172–A180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Research Center of Analysis and Measurement of Shanghai Jiao Tong University for the help in NMR characterization. This work is financially supported by the National Natural Science Foundation of China (Grants No. 21103108, 21173148 and 21373136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Fang or Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fang, S., Qu, L. et al. Compatibility of LiMn2O4 cathode with electrolyte based on low-viscosity ether-functionalized pyrazolium ionic liquid. J Appl Electrochem 45, 235–244 (2015). https://doi.org/10.1007/s10800-014-0783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0783-y

Keywords

Navigation