Skip to main content
Log in

A new contribution to the study of the electrosynthesis of magnetic nanoparticles: the influence of the supporting electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper shows how magnetic nanoparticles are produced by electrochemical synthesis using a low carbon steel bar as an anode and 100 mA cm−2 electric perturbations at room temperature. Two different kinds of salts, (CH3)4NCl and NaCl, were used to prepare the supporting electrolyte solutions. This allowed a comparison to be made between a surfactant and common salt, and allowed their influence on particle size to be analyzed. Additionally, mixtures of water and ethanol were added to the electrolyte solution in order to improve particle size distribution. The nanoparticle samples were characterized by X-ray diffraction, TEM, magnetization measurements, and Raman and Mössbauer spectroscopy. The results showed that after an optimized time of 10 min, the nanoparticles obtained in all the evaluated electrolytes were mainly magnetite (Fe3O4). The particles were between 8 and 10 nm in size. Depending on the nature of the electrolyte, the magnetite nanoparticles exhibited high purity and stoichiometry. The presence of ethanol in the electrolyte avoided particle agglomeration during the formation of magnetite. When the magnetic nanoparticles were exposed to an external magnetic field they showed superparamagnetic behavior and negligible coercivity. Such qualities are extremely useful for applications like ferrofluid precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salas G, Costo R, Morales MP (2012) Chapter 2—Synthesis of inorganic nanoparticles. In: Frontiers of nanoscience. Elsevier, New York, pp 35–79

  2. Fajaroh F, Setyawan H, Widiyastuti W, Winardi S (2012) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol 23:328–333

    Article  CAS  Google Scholar 

  3. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441

    Article  CAS  Google Scholar 

  4. Figuerola A, Corato R di, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Article  CAS  Google Scholar 

  5. Ningthoujam RS, Vatsa RK, Kumar A, Pandey BN, Banerjee S, Tyagi AK (2012) Functionalized magnetic nanoparticles: concepts, synthesis and application in cancer hyperthermia. Functional materials. Elsevier, New York, pp 229–260

    Google Scholar 

  6. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mat Sci Eng B 177:421–427

    Article  CAS  Google Scholar 

  7. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o micro emulsion and Massart’s procedure. J Mater Process Technol 191:235–237

    Article  CAS  Google Scholar 

  8. Marques RFC, Garcia C, Lecante P, Ribeiro SJL, Noé L, Silva NJO, Amaral VTS, Millán A, Verelst M (2008) Electro-precipitation of Fe3O4 nanoparticles in ethanol. J Magn Magn Mater 320:2311–2315

    Article  CAS  Google Scholar 

  9. Ibrahim M, Serrano KG, Noe L, Garcia C, Verelst M (2009) Electro-precipitation of magnetite nanoparticles: an electrochemical study. Electrochim Acta 55:155–158

    Article  CAS  Google Scholar 

  10. Dang F, Enomoto N, Hojo J, Enpuku K (2009) Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason Sonochem 16:649–654

    Article  CAS  Google Scholar 

  11. Hajdú A, Tombácz E, Illés E, Bica D, Vékás L (2008) Magnetite nanoparticles stabilized under physiological conditions for biomedical application. Progr Colloid Polym Sci 135:29–37

  12. Tombácz E (2006) Magnetite in aqueous medium: coating its surface coated with it. Romanian Rep Phys 58(3):281–286

    Google Scholar 

  13. Li G, Li X, Peng W, Fan X, Zhang G, Zhang F (2009) Synthesis of nearly monodisperse nanoparticles in alcohol: a pressure and solvent-induced low-temperature strategy. Appl Surf Sci 255:7021–7027

    Article  CAS  Google Scholar 

  14. Levy L, Sahoo Y, Kim KS, Bergey EJ, Prasad PN (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mat 14:3715–3721

    Article  CAS  Google Scholar 

  15. Guo C, Hu Y, Qian H, Ning J, Xu S (2011) Magnetite (Fe3O4) tetrakaidecahedral microcrystals: synthesis, characterization, and micro-Raman study. Mater Charact 62:148–151

    Article  CAS  Google Scholar 

  16. Roychowdhury A, Pati SP, Kumar S, Das D (2014) Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites. Powder Technol 254:583–590

    Article  CAS  Google Scholar 

  17. Legodi M, De Waal D (2007) The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dye Pigment 74:161–168

    Article  CAS  Google Scholar 

  18. Urquijo JP, Casanova H, Morales AL, Zysler RD (2014) Engineering iron oxide nanoparticles for biomedicine and bioengineering applications. Rev Fac de Ing 71:230–243

    CAS  Google Scholar 

  19. Stevens JG, Khasanov A, Miller JW, Pollak H, Li Z (1998) Mössbauer mineral handbook. Mössbauer Effect Data Center, Asheville

    Google Scholar 

  20. Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers, Norwell, p 417

    Book  Google Scholar 

  21. Barrero CA, Morales AL, Mazo-Zuluaga J, Jaramillo F, Pérez G, Escobar DM, Arroyave C, Tobón J, Montoya PM, Osorio L, Vandenberghe RE, Greneche JM (2003) Synthesis and Mössbauer characterization of Cu and Cr doped magnetites. ReV de Metal (Madrid) 39:62–67

    Article  Google Scholar 

  22. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TRF, Silva KL, Damasceno IHM, Egito EST, Dantas AL, Morales MA, Carriço AS (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79

    Article  Google Scholar 

  23. López-López MT, Durán JDG, Delgado AV, González-Caballero F (2005) Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J Colloid Interface Sci 291:144–151

    Article  Google Scholar 

  24. Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial assistance of the “Departamento Administrativo de Ciencia, Tecnología e Innovación—COLCIENCIAS”, and the Universidad de Antioquia through the project 111556934616 and “Estrategia de Sostenibilidad 2013–2014 de la Universidad de Antioquia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tíffany Marín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, T., Ortega, D., Montoya, P. et al. A new contribution to the study of the electrosynthesis of magnetic nanoparticles: the influence of the supporting electrolyte. J Appl Electrochem 44, 1401–1410 (2014). https://doi.org/10.1007/s10800-014-0766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0766-z

Keywords

Navigation