Skip to main content
Log in

Electrochemical studies on the reduction behaviour of ruthenium nitrosyl ions in nitric acid medium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

To understand the low recovery of ruthenium from ruthenium nitrosyl nitrate solution by electro-deposition technique, electro-reduction behaviour of ruthenium nitrosyl complex [RuII–NO+]3+ in nitric acid medium was investigated using the potentiostatic electrolysis techniques, cyclic voltammetry and chronopotentiometry at Pt and glassy carbon working electrodes. Reduction of [RuNO]3+ was found to be quasi-reversible, one electron transfer process at both the electrodes. The diffusion coefficient (D 0) of [RuNO]3+ species estimated by these techniques was in the order of 10−8 cm2 s−1 and the heterogeneous electron transfer rate constant (k s) for the reduction of [RuNO]3+ was estimated to be about 10−5 cm s−1 using Klingler and Kochi equation. The very low diffusion coefficient value and the low separation percentage of Ru from ruthenium nitrosyl nitrate solution by electro-deposition technique are attributed to the existence of Ru(II) in different stable complexes instead of bare Ru(II) ions, in nitric acid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fletcher JM, Jenkins IL, Lever FM, Martin FS, Powell AR, Todd R (1955) Nitrato and nitro complexes of nitrosylruthenium. J Inorg Nucl Chem 1:378–401

    Article  CAS  Google Scholar 

  2. Brown PGM (1960) Nitro complexes of nitrosylruthenium. J Inorg Nucl Chem 13:73–83

    Article  CAS  Google Scholar 

  3. Wallace RM (1961) The composition of some nitrato nitrosylruthenium complexes. J Inorg Nucl Chem 20:283–289

    Article  Google Scholar 

  4. Balcerzak M (2002) Analytical methods for the determination of ruthenium: the state of the art. Crit Rev Anal Chem 32:181–226

    Article  CAS  Google Scholar 

  5. Scargill D, Lyon CE, Large NR, Fletcher JM (1965) Nitratoaquo complexes of nitrosyl ruthenium III. J Inorg Nucl Chem 27:161–171

    Article  CAS  Google Scholar 

  6. Siczek AA, Steindler M (1978) The chemistry of ruthenium and zirconium in the PUREX solvent extraction process. At Energy Rev 16:575–618

    CAS  Google Scholar 

  7. Boswell GGJ, Soentono S (1981) Ruthenium nitrosyl complexes in nitric acid solutions. J Inorg Nucl Chem 43:1625–1632

    Article  CAS  Google Scholar 

  8. Swain Pravati, Mallika C, Srinivasan R, Kamachi Mudali U, Natarajan R (2013) Separation and recovery of ruthenium—a review. J Radioanal Nucl Chem 298:781–796

    Article  CAS  Google Scholar 

  9. Bockris JO’M, Kim J (1997) Electrochemical treatment of low-level nuclear wastes. J Appl Electrochem 27:623–634

    Article  CAS  Google Scholar 

  10. Molenda E, Mielcarski M (1998) Electrodeposition of 106Ru and 241Am and derived information on preparing sealed radiation sources. J Radioanal Nucl Chem 238:159–162

    Article  CAS  Google Scholar 

  11. Ozawa M, Shinoda Y, Sano Y (2002) The separation of fission-product rare elements toward bridging the nuclear and safety energy systems. Prog Nucl Energy 40:527–538

    Article  CAS  Google Scholar 

  12. Ozawa M, Suzuki T, Koyama S, Fujii Y (2005) Separation of rare metal fission products in radioactive wastes in new directions of their utilization. Prog Nucl Energy 47:462–471

    Article  CAS  Google Scholar 

  13. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2010) Feasibility studies on the electrochemical recovery of fission platinoids from high-level liquid waste. J Radioanal Nucl Chem 284:79–85

    Article  CAS  Google Scholar 

  14. Jayakumar M, Venkatesan KA, Sudha R, Srinivasan TG, Vasudeva Rao PR (2011) Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: recovery and surface morphology of the deposits. Mater Chem Phys 128:141–150

    Article  CAS  Google Scholar 

  15. Turner AD (1989) Liquid treatment process. US Patent 4879006

  16. Motojima K (1990) Removal of Ru from PUREX process. J Nucl Sci Technol 27:262–266

    Article  CAS  Google Scholar 

  17. Motojima K (1990) Process for removing radioactive ruthenium from aqueous solution. US Patent 4938895

  18. Yoneya M, Kawamura K, Torata SI, Takahashi T (1995) Method of separating and recovering ruthenium from high-level radioactive liquid waste. US Patent 5437847

  19. Mousset F, Bedioui F, Eysseric C (2004) Electroassisted elimination of Ru from dissolved RuO2·xH2O in nitric acid solution using Ag(II) redox mediator. Electrochem Commun 6:351–356

    Article  CAS  Google Scholar 

  20. Pravati Swain, Mallika C, Sankaran K, Pandey NK, Srinivasan R, Kamachi Mudali U, Natarajan R (2014) Feasibility studies on the separation of ruthenium from high level liquid waste by constant potential electro-oxidation. Prog Nucl Energy 75:198–206

  21. Toledo JC Jr, Lopes LGF, Alves AA, da Silva LP, Franco DW (2002) Release of NO by a nitrosyl complex upon activation by the mitochondrial reducing powder. J Inorg Biochem 89:267–271

    Article  CAS  Google Scholar 

  22. Borges SSS, Davanzo CU, Castellano EE, Z-Schpector J, Silva SC, Franco DW (1998) Ruthenium nitrosyl complexes with N-heterocyclic ligands. Inorg Chem 37:2670–2677

    Article  CAS  Google Scholar 

  23. Lang DR, Davis JA, Lopes LGF, Ferro AA, Vasconcellos LCG, Franco DW, Tfouni E, Wieraszko A, Clarke MJ (2000) A controlled NO-realising compound. Inorg Chem 39:2294–2300

    Article  CAS  Google Scholar 

  24. Gomes MG, Davanzo CU, Silva SC, Lopes LGF, Santos PS, Franco DW (1998) Cis- and trans- nitrosyltetraammineruthenium (II). Spectra and electrochemical properties and reactivity. J Chem Soc Dalton Trans 4:601–608

    Article  Google Scholar 

  25. Lopes LGF, Gomes MG, Borges SSS, Franco DW (1998) Correction between lever parameter and electronic properties of nitrosyl ruthenium (II) complexes. Aust J Chem 51:865–866

    Article  CAS  Google Scholar 

  26. McGarvey BR, Ferro AA, Tfouni E, Brito Bezerra CW, Bagatin I, Franco DW (2000) Detection of the EPR spectra of NO in Ruthenium (II) complexes. Inorg Chem 39:3577–3581

    Article  CAS  Google Scholar 

  27. Leon M (1979) Ruthenium (IV) in nitric acid media. J Inorg Nucl Chem 41:67–71

    Article  Google Scholar 

  28. Bailar JO (ed) (1973) Comprehensive inorganic chemistry. Pergamon Press, Oxford

    Google Scholar 

  29. Cotton SA, Hart FA (1975) The heavy transition elements. Wiley, New York

    Google Scholar 

  30. Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Structure, chemical and photochemical reactivity and biological activity of some ruthenium amine nitrosyl complexes. Coord Chem Rev 236:57–69

    Article  CAS  Google Scholar 

  31. Doro FG, Filho UPR, Tfouni E (2007) A regenerable ruthenium tetraammine nitrosyl complex immobilized on a modified silica gel surface: preparation and studies of nitric oxide release and nitrite to NO conversion. J Colloid Interface Sci 307:405–417

    Article  CAS  Google Scholar 

  32. Duchovnay A (2011) Comparative electrochemistry, electronic absorption spectroscopy and spectroelectrochemistry of the monometallic ruthenium polypyridyl complexes. Dissertation (MS), Virginia Polytechnic Institute and State University, Blacksburg

  33. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  34. Jagadeeswara Rao Ch, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2009) Electrochemical behavior of europium (III) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Electrochim Acta 54:4718–4725

    Article  Google Scholar 

  35. Jagadeeswara Rao Ch, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2010) Electrochemical and thermodynamic properties of europium(III), samarium(III) and cerium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid. J Nucl Mater 399:81–86

    Article  CAS  Google Scholar 

  36. Klingler RJ, Kochi JK (1981) Electron transfer kinetics from cyclic voltammetry. quantitative description of electrochemical reversibility. J Phys Chem 85:1731–1741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Pravati Swain acknowledges the financial support provided by Department of Atomic Energy in the form of Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mallika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, P., Mallika, C., Jagadeeswara Rao, C. et al. Electrochemical studies on the reduction behaviour of ruthenium nitrosyl ions in nitric acid medium. J Appl Electrochem 45, 209–216 (2015). https://doi.org/10.1007/s10800-014-0759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0759-y

Keywords

Navigation