Journal of Applied Electrochemistry

, Volume 45, Issue 2, pp 185–195 | Cite as

Simultaneous determination of epinephrine, acetaminophen, and tryptophan using Fe2O3(0.5)/SnO2(0.5) nanocomposite sensor

  • M. Taei
  • M. Shavakhi
  • H. Hadadzadeh
  • M. Movahedi
  • M. Rahimi
  • S. Habibollahi
Research Article
Part of the following topical collections:
  1. Sensors and Electrochemical Methods


A nanocomposite of iron(III) oxide and tin(IV) oxide, Fe2O3(0.5)/SnO2(0.5), was prepared by a solid-phase reaction in an alkaline medium. The nanocomposite was characterized by X-ray diffraction, field-emission scanning electron microscopy, and Fourier transform infrared spectroscopy. A fast-response sensor was prepared by electrochemical deposition of the nanocomposite on a glassy carbon electrode. The prepared sensor has an excellent electrocatalytic activity toward the oxidation of epinephrine (EP), acetaminophen (AC), and tryptophan (Trp), therefore, this sensor was used for simultaneous determination of the above drugs. The separation of the oxidation peak potentials for EP–AC and AC–Trp were about 160 and 280 mV, respectively. The calibration curves obtained for EP, AC, and Trp were in the ranges of 0.6–270.0 µmol L−1, 4.5–876.0 µmol L−1, and 0.6–70.0 µmol L−1, respectively. The detection limits (S/N = 3) were 0.07, 0.2, and 0.1 µmol L−1 for EP, AC, and Trp, respectively. Finally, the sensor was used for determination of EP, AC, and Trp in pharmaceutical and biological samples.

Graphical Abstract


Epinephrine Acetaminophen Tryptophan Fe2O3(0.5)/SnO2(0.5) nanocomposite Differential pulse voltammetry Glassy carbon electrode 



The authors gratefully acknowledge support of this work by the Research Council of Payame Noor University and the Center of Excellence in Sensor and Green Chemistry.

Supplementary material

10800_2014_756_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2510 kb)


  1. 1.
    Taylor RJ, Humffray AA (1973) Electrochemical studies on glassy carbon electrodes: I. Electron transfer kinetics. J Electroanal Chem 42:347–354CrossRefGoogle Scholar
  2. 2.
    Blaedel WJ, Jenkins RA (1975) Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal Chem 47:1337–1343CrossRefGoogle Scholar
  3. 3.
    Engstrom RC (1982) Electrochemical pretreatment of glassy carbon electrodes. Anal Chem 54:2310–2314CrossRefGoogle Scholar
  4. 4.
    Engstrom RC, Strasser VA (1984) Characterization of electrochemically pretreated glassy carbon electrodes. Anal Chem 56:136–141CrossRefGoogle Scholar
  5. 5.
    Cabaniss GE, Diamantis AA, Murphy JWR, Linton RW, Meyer TJ (1985) Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes. J Am Chem Soc 107:1845–1853CrossRefGoogle Scholar
  6. 6.
    Hu IF, Karweik DH, Kuwana J (1985) Activation and deactivation of glassy carbon electrodes. J Electroanal Chem 188:59–72CrossRefGoogle Scholar
  7. 7.
    Yu L, Li L, Gao XM, Zhang Y, Meng FN, Wang TS, Xiao G, Chen YJ, Zhu CL (2012) Synthesis and H2S gas sensing properties of cage-like α-MoO3/ZnO composite. Sens Actuators B 171:679–685CrossRefGoogle Scholar
  8. 8.
    Jinkawa T, Sakai G, Tamaki J, Miura N, Yamazoe N (2000) Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. J Mol Catal A 155:193–200CrossRefGoogle Scholar
  9. 9.
    Chu DW, Zeng YP, Jiang DL, Masuda Y (2009) In2O3–SnO2 nano-toasts and nanorods: precipitation preparation, formation mechanism, and gas sensitive properties. Sens Actuators B 137:630–636CrossRefGoogle Scholar
  10. 10.
    Sharifi E, Salimi A, Shams E (2012) DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine. Bioelectrochemistry 86:9–21CrossRefGoogle Scholar
  11. 11.
    Rafiee B, Fakhari AR (2013) Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Biosens Bioelectron 46:130–135CrossRefGoogle Scholar
  12. 12.
    Liu XH, Zhang J, Guo XZ, Wu SH, Wang SR (2010) Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21:095501CrossRefGoogle Scholar
  13. 13.
    Chen J, Xu LN, Li WY (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586CrossRefGoogle Scholar
  14. 14.
    Wang YL, Jiang XC, Xia YN (2003) A solution-phase precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177CrossRefGoogle Scholar
  15. 15.
    Zhang P, Guo ZP, Liu HK (2010) Submicron-sized cube-like α-Fe2O3 agglomerates as an anode material for Li-ion batteries. Electrochim Acta 55:8521–8526CrossRefGoogle Scholar
  16. 16.
    Li LL, Chu Y, Liu Y, Dong LH (2007) Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J Phys Chem C 111:2123–2127CrossRefGoogle Scholar
  17. 17.
    Vuong DD, Trung KQ, Hung NH, Hien NV, Chien ND (2014) Facile preparation of large-scale a-Fe2O3 nanorod/SnO2 nanorod composites and their LPG-sensing properties. J Alloys Compd 599:195–201CrossRefGoogle Scholar
  18. 18.
    Xia H, Zhuang H, Zhang T, Xiao D (2008) Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2. Mater Lett 62:1126–1128CrossRefGoogle Scholar
  19. 19.
    Kotsikau D, Ivanovskaya M, Orlik D, Falasconi M (2004) Gas sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites. Sens Actuators B 101:199–206CrossRefGoogle Scholar
  20. 20.
    Huang L, Fan H (2012) Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens Actuators B 171–172:1257–1263CrossRefGoogle Scholar
  21. 21.
    Li P, Fan H, Cai Y (2013) In2O3/SnO2 heterojunction microstructures: Facile room temperature solid-state synthesis and enhanced Cl2 sensing performance. Sens Actuators, B 185:110–116CrossRefGoogle Scholar
  22. 22.
    Ensafi AA, Taei M, Khayamian T (2009) A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode. J Electroanal Chem 633:212–220CrossRefGoogle Scholar
  23. 23.
    Bessems JGM, Vermeulen NPE (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55–138CrossRefGoogle Scholar
  24. 24.
    Olaleye MT, Rocha BTJ (2008) Acetaminophen-induced liver damage in mice:effects of some medicinal plants on the oxidative defence system. Exp Toxicol Pathol 59:319–327CrossRefGoogle Scholar
  25. 25.
    Roberts JC, Phaneuf HL, Szakacs JG, Zera RT, Lamb JG, Franklin MR (1998) Differential chemoprotection against acetaminophen-induced hepatotoxicity by latentiated l-cysteines. Chem Res Toxicol 11:1274–1282CrossRefGoogle Scholar
  26. 26.
    Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4:2–6CrossRefGoogle Scholar
  27. 27.
    Takikawa O (2005) Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun 338:12–19CrossRefGoogle Scholar
  28. 28.
    Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. Naunyn Schmiedeberg’s Arch Pharmacol 303:157–164CrossRefGoogle Scholar
  29. 29.
    Prabhu P, Babu RS, Narayanan SS (2011) Electrocatalytic oxidation of l-tryptophan using copper hexacyanoferrate film modified gold nanoparticle graphite–wax electrode. Colloids Surf B 87:103–108CrossRefGoogle Scholar
  30. 30.
    Kochen W, Steinhart H (1994) l-Tryptophan: current prospects in medicine and drug safety. de-Gruyter, BerlinGoogle Scholar
  31. 31.
    Nasirizadeh N, Shekari Z, Zare HR, Shishehborec MR, Fakhari AR, Ahmar H (2013) Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens Bioelectron 41:608–614CrossRefGoogle Scholar
  32. 32.
    Devadas B, Rajkumar M, Chen SM (2013) Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol. Colloids Surf B 116:674–680Google Scholar
  33. 33.
    Tavana T, Khalilzadeh MA, Karimi-Maleh H, Ensafi AA, Beitollahi H, Zareyee D (2012) Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J Mol Liq 168:69–74CrossRefGoogle Scholar
  34. 34.
    Mazloum-Ardakani M, Beitollahi H, Sheikh Mohseni MA, Benvidi A, Naeimi H, Nejati-Barzoki M, Taghavinia N (2010) Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis (nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles. Colloids Surf B 76:82–87Google Scholar
  35. 35.
    Mazloum-Ardakani M, Dehghani-Firouzabadi A, Rajabzade N, Sheikh-Mohseni MA, Benvidi A, Abdollahi-Alibeik M (2013) MCM/ZrO2 nanoparticles modified electrode for simultaneous and selective voltammetric determination of epinephrine and acetaminophenm. J Iran Chem Soc 10:1–5CrossRefGoogle Scholar
  36. 36.
    Raoof JB, Chekin F, Ojani R, Barari S, Anbia M, Mandegarzad S (2012) Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J Solid State Electrochem 16:3753–3760CrossRefGoogle Scholar
  37. 37.
    Ensafi AA, Karimi-Maleh H, Mallakpour S (2012) Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanalysis 24:666–667CrossRefGoogle Scholar
  38. 38.
    Firooz AA, Mahjoub AR, Khodadadi AA (2009) Effects of flower-like, sheet-like and granular SnO2 nanostructures prepared by solid-state reactions on CO sensing. Mater Chem Phys 115:196–199CrossRefGoogle Scholar
  39. 39.
    Galus Z (1976) Fundumentals of electrochemical analysis. Ellis Horwood, New YorkGoogle Scholar
  40. 40.
    Bulatova AV, Petrova AV, Vishnikin AB, Moskvin AL, Moskvin LN (2012) Stepwise injection spectrophotometric determination of epinephrine. Talanta 96:62–67CrossRefGoogle Scholar
  41. 41.
    Safavi A, Moradlou O (2004) Simultaneous kinetic determination of paracetamol and p-aminophenol by using H-point standard addition method. Anal Lett 37:2337–2349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Taei
    • 1
  • M. Shavakhi
    • 1
  • H. Hadadzadeh
    • 2
  • M. Movahedi
    • 1
  • M. Rahimi
    • 1
  • S. Habibollahi
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations