Journal of Applied Electrochemistry

, Volume 44, Issue 12, pp 1289–1294 | Cite as

Optimization of dopamine determination based on nanowires PEDOT/polydopamine hybrid film modified electrode

  • R. Salgado
  • M. A. del Valle
  • B. G. Duran
  • M. A. Pardo
  • F. Armijo
Research Article


Poly(3,4-ethylenedioxythiophene) nanowires (nw-PEDOT), between 6.7–13.8 nm diameter, were obtained by electrochemical methods utilizing modified electrodes with silicon oxide as a template to afford a Pt/nw-PEDOT electrode. Dopamine electro-polymerization was next accomplished upon this electrode (Pt/nw-PEDOT/PDA). The Pt/nw-PEDOT/PDA assembly is capable of hindering interfering signals such as those from ascorbic and uric acid, enabling thus the selective detection of dopamine. Amperometric determination studies allowed limit of detection and limit of quantification limits of 0.47 and 1.59 µM, respectively, to be established. These limits were lower than those obtained with the same conducting polymer but without a nanowire structure.


Dopamine Poly(3, 4-ethylenedioxythiophene) Nanowires Hybrid film Mesoporous silica template 



The authors kindly acknowledge the financial support through Project FONDECYT Nr. 1110041 and 1141158. R. Salgado thanks CONICYT Scholarship 2010, Folio 63,100,053.

Supplementary material

10800_2014_728_MOESM1_ESM.pdf (171 kb)
Supplementary material 1 (PDF 171 kb)


  1. 1.
    Lin K, Yin C, Chen S-M (2011) Simultaneous determination of AA, DA, and UA based on bipolymers by electropolymerization of luminol and 3,4-ethylenedioxythiophene monomers. Int J Electrochem Sci 6:3951–3965Google Scholar
  2. 2.
    Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224–229CrossRefGoogle Scholar
  3. 3.
    Kim B, Son S, Lee K, Yang H, Kwak J (2012) Dopamine detection using the selective and spontaneous formation of electrocatalytic poly(dopamine) films on indium-tin oxide electrodes. Electroanalysis 24:993–996CrossRefGoogle Scholar
  4. 4.
    Luczak T (2008) Electrocatalytic application of an overoxidized dopamine film prepared on a gold electrode surface to selective epinephrine sensing. Electroanalysis 20:1317–1322CrossRefGoogle Scholar
  5. 5.
    Luczak T (2008) Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochim Acta 53:5725–5731CrossRefGoogle Scholar
  6. 6.
    Chang H, Dong IK, Yu CP (2006) Electrochemically degraded dopamine film for the determination of dopamine. Electroanalysis 18:1578–1583CrossRefGoogle Scholar
  7. 7.
    Salgado R, del Rio R, del Valle MA, Armijo F (2013) Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode. J Electroanal Chem 704:130–136CrossRefGoogle Scholar
  8. 8.
    Yoon H, Chang M, Jang J (2007) Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater 17:431–436CrossRefGoogle Scholar
  9. 9.
    Xu G, Li B, Cui XT, Ling L, Luo X (2013) Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens Actuators B Chem 188:405–410CrossRefGoogle Scholar
  10. 10.
    Palanisamy S, Ku S, Chen S-M (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042CrossRefGoogle Scholar
  11. 11.
    Yang S, Li G, Yin Y, Yang R, Li J, Qu L (2013) Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. J Electroanal Chem 703:45–51CrossRefGoogle Scholar
  12. 12.
    Song M-J, Lee S-K, Kim J-H, Lim D-S (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28:583–588CrossRefGoogle Scholar
  13. 13.
    Lu H-H, Lin C-Y, Hsiao T-C, Fang Y-Y, Ho K-C, Yang D, Lee C-K, Hsu S-M, Lin C-W (2009) Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Anal Chim Acta 640:68–74CrossRefGoogle Scholar
  14. 14.
    Seung IC, Sang BL (2008) Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc Chem Res 41:699–707CrossRefGoogle Scholar
  15. 15.
    Long YZ, Duvail JL, Chen ZJ, Jin AZ, Gu CZ (2009) Electrical properties of isolated poly(3,4-ethylenedioxythiophene) nanowires prepared by template synthesis. Polym Adv Technol 20:541–544CrossRefGoogle Scholar
  16. 16.
    Liu R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943CrossRefGoogle Scholar
  17. 17.
    Duvail JL, Long Y, Retho P, Louarn G, de Dauginet Pra L, Demoustier-Champagne S (2008) Enhanced electroactivity and electrochromism in PEDOT nanowires. Mol Cryst Liq Cryst 485:835–842CrossRefGoogle Scholar
  18. 18.
    Wang Y, Coti KK, Wang J, Alam MM, Shyue J-J, Lu W, Padture NP, Tseng H-R (2007) Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array. Nanotechnology 18:424021CrossRefGoogle Scholar
  19. 19.
    Samitsu S, Shimomura T, Ito K, Fujimori M, Heike S, Hashizume T (2005) Conductivity measurements of individual poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanowires on nanoelectrodes using manipulation with an atomic force microscope. Appl Phys Lett 86:1–3CrossRefGoogle Scholar
  20. 20.
    Hamedi M, Herland A, Karlsson RH, Lnganäs O (2008) Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. Nano Lett 8:1736–1740CrossRefGoogle Scholar
  21. 21.
    Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater 6:602–608CrossRefGoogle Scholar
  22. 22.
    del Valle MA, Gacitúa M, Díaz FR, Armijo F, del Río R (2009) Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates. Electrochem Commun 11:2117–2120CrossRefGoogle Scholar
  23. 23.
    del Valle MA, Gacitua M, Diaz FR, Armijo F, Soto JP (2012) Electro-synthesis and characterization of polythiophene nano-wires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation. Electrochim Acta 71:277–282CrossRefGoogle Scholar
  24. 24.
    East GA, del Valle MA (2000) Easy-to-make Ag/AgCl reference electrode. J Chem Educ 77:97CrossRefGoogle Scholar
  25. 25.
    del Valle MA, Camarada MB, Díaz F, East GA (2008) Correlation between morphology and NGM of 3,4-ethylenedioxythiophene (EDOT) in acetonitrile. e-Polymers (No. 072) 8:839–850Google Scholar
  26. 26.
    Arteaga GC, del Valle MA, Antilén M, Romero M, Ramos A, Hernández L, Arevalo MC, Pastor E, Louarn G (2013) Nucleation and growth mechanism of electro-synthesized poly(pyrrole) on steel. Int J Electrochem Sci 8:4120–4130Google Scholar
  27. 27.
    Romero M, del Valle MA, del Río R, Díaz FR, Armijo F, Dalchiele EA (2013) Temperature effect on nucleation and growth mechanism of poly(o-anisidine) and poly(aniline) electro-synthesis. J Electrochem Soc 160:G125–G134CrossRefGoogle Scholar
  28. 28.
    del Valle MA, Salgado R, Armijo F (2014) PEDOT nanowires and platinum nanoparticles modified electrodes to be assayed in formic acid electro-oxidation. Int J Electrochem Sci 9:1557–1564Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. Salgado
    • 1
  • M. A. del Valle
    • 1
  • B. G. Duran
    • 1
  • M. A. Pardo
    • 1
  • F. Armijo
    • 1
  1. 1.Departamento de Química Inorgánica, Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations