Skip to main content
Log in

Optimization of dopamine determination based on nanowires PEDOT/polydopamine hybrid film modified electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene) nanowires (nw-PEDOT), between 6.7–13.8 nm diameter, were obtained by electrochemical methods utilizing modified electrodes with silicon oxide as a template to afford a Pt/nw-PEDOT electrode. Dopamine electro-polymerization was next accomplished upon this electrode (Pt/nw-PEDOT/PDA). The Pt/nw-PEDOT/PDA assembly is capable of hindering interfering signals such as those from ascorbic and uric acid, enabling thus the selective detection of dopamine. Amperometric determination studies allowed limit of detection and limit of quantification limits of 0.47 and 1.59 µM, respectively, to be established. These limits were lower than those obtained with the same conducting polymer but without a nanowire structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin K, Yin C, Chen S-M (2011) Simultaneous determination of AA, DA, and UA based on bipolymers by electropolymerization of luminol and 3,4-ethylenedioxythiophene monomers. Int J Electrochem Sci 6:3951–3965

    CAS  Google Scholar 

  2. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  3. Kim B, Son S, Lee K, Yang H, Kwak J (2012) Dopamine detection using the selective and spontaneous formation of electrocatalytic poly(dopamine) films on indium-tin oxide electrodes. Electroanalysis 24:993–996

    Article  CAS  Google Scholar 

  4. Luczak T (2008) Electrocatalytic application of an overoxidized dopamine film prepared on a gold electrode surface to selective epinephrine sensing. Electroanalysis 20:1317–1322

    Article  CAS  Google Scholar 

  5. Luczak T (2008) Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochim Acta 53:5725–5731

    Article  CAS  Google Scholar 

  6. Chang H, Dong IK, Yu CP (2006) Electrochemically degraded dopamine film for the determination of dopamine. Electroanalysis 18:1578–1583

    Article  CAS  Google Scholar 

  7. Salgado R, del Rio R, del Valle MA, Armijo F (2013) Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode. J Electroanal Chem 704:130–136

    Article  CAS  Google Scholar 

  8. Yoon H, Chang M, Jang J (2007) Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater 17:431–436

    Article  CAS  Google Scholar 

  9. Xu G, Li B, Cui XT, Ling L, Luo X (2013) Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens Actuators B Chem 188:405–410

    Article  CAS  Google Scholar 

  10. Palanisamy S, Ku S, Chen S-M (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042

    Article  CAS  Google Scholar 

  11. Yang S, Li G, Yin Y, Yang R, Li J, Qu L (2013) Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. J Electroanal Chem 703:45–51

    Article  CAS  Google Scholar 

  12. Song M-J, Lee S-K, Kim J-H, Lim D-S (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28:583–588

    Article  CAS  Google Scholar 

  13. Lu H-H, Lin C-Y, Hsiao T-C, Fang Y-Y, Ho K-C, Yang D, Lee C-K, Hsu S-M, Lin C-W (2009) Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Anal Chim Acta 640:68–74

    Article  CAS  Google Scholar 

  14. Seung IC, Sang BL (2008) Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc Chem Res 41:699–707

    Article  Google Scholar 

  15. Long YZ, Duvail JL, Chen ZJ, Jin AZ, Gu CZ (2009) Electrical properties of isolated poly(3,4-ethylenedioxythiophene) nanowires prepared by template synthesis. Polym Adv Technol 20:541–544

    Article  CAS  Google Scholar 

  16. Liu R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943

    Article  CAS  Google Scholar 

  17. Duvail JL, Long Y, Retho P, Louarn G, de Dauginet Pra L, Demoustier-Champagne S (2008) Enhanced electroactivity and electrochromism in PEDOT nanowires. Mol Cryst Liq Cryst 485:835–842

    Article  CAS  Google Scholar 

  18. Wang Y, Coti KK, Wang J, Alam MM, Shyue J-J, Lu W, Padture NP, Tseng H-R (2007) Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array. Nanotechnology 18:424021

    Article  Google Scholar 

  19. Samitsu S, Shimomura T, Ito K, Fujimori M, Heike S, Hashizume T (2005) Conductivity measurements of individual poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) nanowires on nanoelectrodes using manipulation with an atomic force microscope. Appl Phys Lett 86:1–3

    Article  Google Scholar 

  20. Hamedi M, Herland A, Karlsson RH, Lnganäs O (2008) Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. Nano Lett 8:1736–1740

    Article  CAS  Google Scholar 

  21. Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater 6:602–608

    Article  CAS  Google Scholar 

  22. del Valle MA, Gacitúa M, Díaz FR, Armijo F, del Río R (2009) Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates. Electrochem Commun 11:2117–2120

    Article  Google Scholar 

  23. del Valle MA, Gacitua M, Diaz FR, Armijo F, Soto JP (2012) Electro-synthesis and characterization of polythiophene nano-wires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation. Electrochim Acta 71:277–282

    Article  Google Scholar 

  24. East GA, del Valle MA (2000) Easy-to-make Ag/AgCl reference electrode. J Chem Educ 77:97

    Article  CAS  Google Scholar 

  25. del Valle MA, Camarada MB, Díaz F, East GA (2008) Correlation between morphology and NGM of 3,4-ethylenedioxythiophene (EDOT) in acetonitrile. e-Polymers (No. 072) 8:839–850

  26. Arteaga GC, del Valle MA, Antilén M, Romero M, Ramos A, Hernández L, Arevalo MC, Pastor E, Louarn G (2013) Nucleation and growth mechanism of electro-synthesized poly(pyrrole) on steel. Int J Electrochem Sci 8:4120–4130

    CAS  Google Scholar 

  27. Romero M, del Valle MA, del Río R, Díaz FR, Armijo F, Dalchiele EA (2013) Temperature effect on nucleation and growth mechanism of poly(o-anisidine) and poly(aniline) electro-synthesis. J Electrochem Soc 160:G125–G134

    Article  CAS  Google Scholar 

  28. del Valle MA, Salgado R, Armijo F (2014) PEDOT nanowires and platinum nanoparticles modified electrodes to be assayed in formic acid electro-oxidation. Int J Electrochem Sci 9:1557–1564

    Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the financial support through Project FONDECYT Nr. 1110041 and 1141158. R. Salgado thanks CONICYT Scholarship 2010, Folio 63,100,053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Armijo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, R., del Valle, M.A., Duran, B.G. et al. Optimization of dopamine determination based on nanowires PEDOT/polydopamine hybrid film modified electrode. J Appl Electrochem 44, 1289–1294 (2014). https://doi.org/10.1007/s10800-014-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0728-5

Keywords

Navigation