Skip to main content
Log in

Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 °C has a large surface area (1,200 mg−1). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge–discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g−1 is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 °C. The supercapacitor properties of activated carbon sample prepared at 600 °C are superior to the samples prepared at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Marsh H, Reinoso FR (2006) Activated carbon. Elsevier Science Ltd., Philadelphia, p 1

    Book  Google Scholar 

  2. Winter M, Moeller KC, Besenhard JO (2004) In: Nazri GA, Pistoia G (eds) Lithium batteries: science and technology. Kluwer Academic Publishers, Boston, p 144

    Google Scholar 

  3. Beguin F, Frackowiak E (2013) Supercapacitors: materials, systems and applications. Wiley, Weinheim, p 1

    Book  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  6. Winter M, Brodd RJ (2004) Chem Rev 104(10):4245–4269

    Article  CAS  Google Scholar 

  7. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  8. Naoi K, Ishimoto S, Miyamoto JI, Naoi W (2012) Energy Environ Sci 5:9363–9373

    Article  CAS  Google Scholar 

  9. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic Publishers/Plenum Press, New York, p 1

    Book  Google Scholar 

  10. Kalyani P, Anitha A (2013) Int J Hydrog Energy 38:4034–4045

    Article  CAS  Google Scholar 

  11. Kim C, Lee JW, Kim JH, Yang KS (2006) Korean J Chem Eng 23(4):592–594

    Article  CAS  Google Scholar 

  12. Wu FC, Tseng RL, Hu CC, Wang CC (2004) J Power Sources 138:351–359

    Article  CAS  Google Scholar 

  13. Wu FC, Tseng RL, Hu CC, Wang CC (2006) J Power Sources 159:1532–1542

    Article  CAS  Google Scholar 

  14. Jisha MR, Hwang YJ, Shin JS, Nahm KS, Kumar TP, Karthikeyan K, Dhanikaivelu N, Kalpana D, Renganathan NG, Stephan AM (2009) Mater Chem Phys 115:33–39

    Article  CAS  Google Scholar 

  15. Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Electrochem Commun 10:868–871

    Article  CAS  Google Scholar 

  16. Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ (2009) J Phys Chem Solids 70:1256–1260

    Article  CAS  Google Scholar 

  17. Li X, Han C, Chen X, Shi C (2010) Microporous Mesoporous Mater 131:303–309

    Article  CAS  Google Scholar 

  18. Yang J, Liu Y, Chen X, Hu Z, Zhao G (2008) Acta Phys Chim Sin 1:13–19

    Article  Google Scholar 

  19. Marin MO, Fernandez JA, Lazaro MJ, Gonzalez CF, Garcia AM, Serrano VG, Stoeckli F, Centeno TA (2009) Mater Chem Phys 114:323–327

    Article  Google Scholar 

  20. Wu FC, Tseng RL, Hu CC, Wang CC (2005) J Power Sources 144:302–309

    Article  CAS  Google Scholar 

  21. Hu CC, Wang CC, Wu FC, Tseng RL (2007) Electrochim Acta 52:2498–2505

    Article  CAS  Google Scholar 

  22. Senthilkumar ST, Senthilkumar B, Balaji S, Sanjeeviraja C, Selvan RK (2011) Mater Res Bull 46:413–419

    Article  CAS  Google Scholar 

  23. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Bioresour Technol 102:1118–1125

    Article  CAS  Google Scholar 

  24. Centeno TA, Rubiera F, Stoeckli F (2009) 1st Spanish national conference on advances in materials recycling and eco-energy, Madrid, 12–13 November 2009

  25. Peng C, Yan XB, Wang RT, Lang JW, Qu YJ, Xue QJ (2013) Electrochim Acta 87:401–408

    Article  CAS  Google Scholar 

  26. Taer E, Deraman M, Talib IA, Umar AA, Qyama M, Yunus RM (2010) Curr Appl Phys 10:1071–1075

    Article  Google Scholar 

  27. Rufford TE, Jurcakova DH, Khosla K, Zhu Z, Lu GQ (2010) J Power Sources 195:912–918

    Article  CAS  Google Scholar 

  28. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587–591

    Article  CAS  Google Scholar 

  29. Liu MC, Kong LB, Lu C, Li XM, Luo YC, Kang L (2012) RSC Adv 2:1890–1896

    Article  CAS  Google Scholar 

  30. Zhao XY, Cao JP, Morishita K, Ozaki JI, Takarada T (2010) Energy Fuels 24:1889–1893

    Article  CAS  Google Scholar 

  31. Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) Carbon 56:146–154

    Article  CAS  Google Scholar 

  32. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) J Mater Chem A 1:6462–6470

    Article  CAS  Google Scholar 

  33. Viswanathan B, Neel PI, Varadarajan TK (2009) Methods of activation and specific applications of carbon materials. Indian Institute of Technology Madras, Chennai

    Google Scholar 

  34. Manocha SM (2003) Sadhana 28:335–348

    Article  CAS  Google Scholar 

  35. Dahn JR, Sleigh AK, Shi H, Reimers JN, Zhong Q, Way BM (1993) Electrochim Acta 38:1179–1191

    Article  CAS  Google Scholar 

  36. Gong J, Wu H, Yang Q (1999) Carbon 37:1409–1416

    Article  CAS  Google Scholar 

  37. Guo Y, Yang S, Yu K, Zhao J, Wang Z, Xue H (2002) Mater Chem Phys 74:320–323

    Article  CAS  Google Scholar 

  38. Li W, Chen M, Wang C (2011) Mater Lett 65:3368–3370

    Article  CAS  Google Scholar 

  39. Antonio NM, Romero R, Romero A, Valverde JL (2011) J Mater Chem 21:1664–1672

    Article  Google Scholar 

  40. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  41. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  42. Lespade P, Jishi RA, Dresselhaus MS (1982) Carbon 20:427–431

    Article  CAS  Google Scholar 

  43. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) Carbon 44:3239–3246

    Article  CAS  Google Scholar 

  44. Cregg SJ, Singh KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London, p 1

    Google Scholar 

  45. Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  Google Scholar 

  46. Jagiello J, Olivier JP (2009) J Phys Chem C 113:19382–19385

    Article  CAS  Google Scholar 

  47. Qiao W, Yoon SH, Mochida I (2006) Energy Fuels 20:1680–1684

    Article  CAS  Google Scholar 

  48. Zhang CX, Zhang R, Xing BL, Cheng G, Xie YB, Qiao WM, Zhan L, Liang XY, Ling LC (2010) N Carbon Mater 25(2):129–133

    Article  Google Scholar 

  49. Xu B, Wu F, Mu D, Dai L, Cao G, Zhang H, Chen S, Yang Y (2010) Int J Hydrog Energy 35:632–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Munichandraiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, B., Shanmughasundaram, D., Penki, T.R. et al. Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 44, 903–916 (2014). https://doi.org/10.1007/s10800-014-0708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0708-9

Keywords

Navigation