Journal of Applied Electrochemistry

, Volume 44, Issue 8, pp 903–916 | Cite as

Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors

  • Brij Kishore
  • D. Shanmughasundaram
  • Tirupathi Rao Penki
  • N. Munichandraiah
Research Article
Part of the following topical collections:
  1. Capacitors


Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 °C has a large surface area (1,200 mg−1). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge–discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g−1 is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 °C. The supercapacitor properties of activated carbon sample prepared at 600 °C are superior to the samples prepared at higher temperatures.


Coconut kernel Activated carbon Supercapacitor Specific capacitance 


  1. 1.
    Marsh H, Reinoso FR (2006) Activated carbon. Elsevier Science Ltd., Philadelphia, p 1CrossRefGoogle Scholar
  2. 2.
    Winter M, Moeller KC, Besenhard JO (2004) In: Nazri GA, Pistoia G (eds) Lithium batteries: science and technology. Kluwer Academic Publishers, Boston, p 144Google Scholar
  3. 3.
    Beguin F, Frackowiak E (2013) Supercapacitors: materials, systems and applications. Wiley, Weinheim, p 1CrossRefGoogle Scholar
  4. 4.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  5. 5.
    Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62CrossRefGoogle Scholar
  6. 6.
    Winter M, Brodd RJ (2004) Chem Rev 104(10):4245–4269CrossRefGoogle Scholar
  7. 7.
    Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577–3613CrossRefGoogle Scholar
  8. 8.
    Naoi K, Ishimoto S, Miyamoto JI, Naoi W (2012) Energy Environ Sci 5:9363–9373CrossRefGoogle Scholar
  9. 9.
    Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic Publishers/Plenum Press, New York, p 1CrossRefGoogle Scholar
  10. 10.
    Kalyani P, Anitha A (2013) Int J Hydrog Energy 38:4034–4045CrossRefGoogle Scholar
  11. 11.
    Kim C, Lee JW, Kim JH, Yang KS (2006) Korean J Chem Eng 23(4):592–594CrossRefGoogle Scholar
  12. 12.
    Wu FC, Tseng RL, Hu CC, Wang CC (2004) J Power Sources 138:351–359CrossRefGoogle Scholar
  13. 13.
    Wu FC, Tseng RL, Hu CC, Wang CC (2006) J Power Sources 159:1532–1542CrossRefGoogle Scholar
  14. 14.
    Jisha MR, Hwang YJ, Shin JS, Nahm KS, Kumar TP, Karthikeyan K, Dhanikaivelu N, Kalpana D, Renganathan NG, Stephan AM (2009) Mater Chem Phys 115:33–39CrossRefGoogle Scholar
  15. 15.
    Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Electrochem Commun 10:868–871CrossRefGoogle Scholar
  16. 16.
    Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ (2009) J Phys Chem Solids 70:1256–1260CrossRefGoogle Scholar
  17. 17.
    Li X, Han C, Chen X, Shi C (2010) Microporous Mesoporous Mater 131:303–309CrossRefGoogle Scholar
  18. 18.
    Yang J, Liu Y, Chen X, Hu Z, Zhao G (2008) Acta Phys Chim Sin 1:13–19CrossRefGoogle Scholar
  19. 19.
    Marin MO, Fernandez JA, Lazaro MJ, Gonzalez CF, Garcia AM, Serrano VG, Stoeckli F, Centeno TA (2009) Mater Chem Phys 114:323–327CrossRefGoogle Scholar
  20. 20.
    Wu FC, Tseng RL, Hu CC, Wang CC (2005) J Power Sources 144:302–309CrossRefGoogle Scholar
  21. 21.
    Hu CC, Wang CC, Wu FC, Tseng RL (2007) Electrochim Acta 52:2498–2505CrossRefGoogle Scholar
  22. 22.
    Senthilkumar ST, Senthilkumar B, Balaji S, Sanjeeviraja C, Selvan RK (2011) Mater Res Bull 46:413–419CrossRefGoogle Scholar
  23. 23.
    Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Bioresour Technol 102:1118–1125CrossRefGoogle Scholar
  24. 24.
    Centeno TA, Rubiera F, Stoeckli F (2009) 1st Spanish national conference on advances in materials recycling and eco-energy, Madrid, 12–13 November 2009Google Scholar
  25. 25.
    Peng C, Yan XB, Wang RT, Lang JW, Qu YJ, Xue QJ (2013) Electrochim Acta 87:401–408CrossRefGoogle Scholar
  26. 26.
    Taer E, Deraman M, Talib IA, Umar AA, Qyama M, Yunus RM (2010) Curr Appl Phys 10:1071–1075CrossRefGoogle Scholar
  27. 27.
    Rufford TE, Jurcakova DH, Khosla K, Zhu Z, Lu GQ (2010) J Power Sources 195:912–918CrossRefGoogle Scholar
  28. 28.
    Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587–591CrossRefGoogle Scholar
  29. 29.
    Liu MC, Kong LB, Lu C, Li XM, Luo YC, Kang L (2012) RSC Adv 2:1890–1896CrossRefGoogle Scholar
  30. 30.
    Zhao XY, Cao JP, Morishita K, Ozaki JI, Takarada T (2010) Energy Fuels 24:1889–1893CrossRefGoogle Scholar
  31. 31.
    Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) Carbon 56:146–154CrossRefGoogle Scholar
  32. 32.
    Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) J Mater Chem A 1:6462–6470CrossRefGoogle Scholar
  33. 33.
    Viswanathan B, Neel PI, Varadarajan TK (2009) Methods of activation and specific applications of carbon materials. Indian Institute of Technology Madras, ChennaiGoogle Scholar
  34. 34.
    Manocha SM (2003) Sadhana 28:335–348CrossRefGoogle Scholar
  35. 35.
    Dahn JR, Sleigh AK, Shi H, Reimers JN, Zhong Q, Way BM (1993) Electrochim Acta 38:1179–1191CrossRefGoogle Scholar
  36. 36.
    Gong J, Wu H, Yang Q (1999) Carbon 37:1409–1416CrossRefGoogle Scholar
  37. 37.
    Guo Y, Yang S, Yu K, Zhao J, Wang Z, Xue H (2002) Mater Chem Phys 74:320–323CrossRefGoogle Scholar
  38. 38.
    Li W, Chen M, Wang C (2011) Mater Lett 65:3368–3370CrossRefGoogle Scholar
  39. 39.
    Antonio NM, Romero R, Romero A, Valverde JL (2011) J Mater Chem 21:1664–1672CrossRefGoogle Scholar
  40. 40.
    Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126CrossRefGoogle Scholar
  41. 41.
    Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Phys Rep 473:51–87CrossRefGoogle Scholar
  42. 42.
    Lespade P, Jishi RA, Dresselhaus MS (1982) Carbon 20:427–431CrossRefGoogle Scholar
  43. 43.
    Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) Carbon 44:3239–3246CrossRefGoogle Scholar
  44. 44.
    Cregg SJ, Singh KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London, p 1Google Scholar
  45. 45.
    Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763CrossRefGoogle Scholar
  46. 46.
    Jagiello J, Olivier JP (2009) J Phys Chem C 113:19382–19385CrossRefGoogle Scholar
  47. 47.
    Qiao W, Yoon SH, Mochida I (2006) Energy Fuels 20:1680–1684CrossRefGoogle Scholar
  48. 48.
    Zhang CX, Zhang R, Xing BL, Cheng G, Xie YB, Qiao WM, Zhan L, Liang XY, Ling LC (2010) N Carbon Mater 25(2):129–133CrossRefGoogle Scholar
  49. 49.
    Xu B, Wu F, Mu D, Dai L, Cao G, Zhang H, Chen S, Yang Y (2010) Int J Hydrog Energy 35:632–637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Brij Kishore
    • 1
  • D. Shanmughasundaram
    • 1
  • Tirupathi Rao Penki
    • 1
  • N. Munichandraiah
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations