Skip to main content
Log in

Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a plasma electrolytic oxidation process was applied to AZ91 and AM50 magnesium alloys and commercially pure magnesium to produce a protective surface layer. The plasma electrolytic oxidation process was carried out in an alkaline phosphate solution with a DC power supply, using relatively high current densities and short treatment times. The influence of some important process parameters such as current density, treatment time and voltage was studied. The layers were characterised by scansion electron microscopy, X-ray diffraction and X-ray photoelectron spectrometry, in order to investigate the effect of the process parameters on the microstructure and chemical composition. The corrosion resistance properties of the obtained layers were investigated by potentiodynamic anodic polarization and electrochemical impedance spectroscopy tests. The current density, applied during the treatment, influenced the morphology and the thickness of the coatings, and, consequently, the corrosion resistance. The corrosion tests evidenced that the layers obtained with plasma electrolytic process provided a good corrosion protection to the magnesium and magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liang J, Bala-Srinivasan P, Blawert C, Störmer M, Dietzel W (2009) Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochim Acta 54:3842–3850

    Article  CAS  Google Scholar 

  2. Mordike BL, Ebert T (2001) Magnesium properties—applications—potential. Mater Sci Eng 302:37–45

    Article  Google Scholar 

  3. Nemcovà A, Skeldon P, Thompson GE, Pacal B (2013) Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy. Surf Coat Technol 232:827–838

    Article  Google Scholar 

  4. Wang L, Chen L, Yan ZC, Wang HL, Peng JZ (2009) Growth and corrosion characteristics of plasma electrolytic oxidation ceramic films formed on AZ31 magnesium alloy. The Chinese journal of Process Engineering 9:592–597

    CAS  Google Scholar 

  5. Song G, Atrens A (2003) Understanding magnesium corrosion—A framework for improved alloy performance. Adv Eng Mater 5:837–858

    Article  CAS  Google Scholar 

  6. Rama Krishna L, Somaraju KRC, Sundararajan G (2003) The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surf Coat Technol 484:163–164

    Google Scholar 

  7. Nie X, Meletis EI, Jiang JC, Leyland A, Yerokhin AL, Matthews A (2002) Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf Coat Technol 149:245–251

    Article  CAS  Google Scholar 

  8. Snizhko LO, Yerokhin AL, Pilkington A, Gurevina NL, Misnyankin DO, Leyland A, Matthews A (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta 49:2085–2095

    Article  CAS  Google Scholar 

  9. Cao FH, Lin LY, Zhang Z, Zhang JQ, Cao CN (2008) Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion re-sistance. Trans Nonferrous Met Soc China 18:240–247

    Article  Google Scholar 

  10. Martin J, Melhem A, Shchedrina I, Duchanoy T, Nominè A, Henrion G, Czerwiec T, Belmonte T (2013) Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surf Coat Technol 221:70–76

    Article  CAS  Google Scholar 

  11. Ma Y, Nie X, Northwood DO, Hu H (2006) Systematic study of the electrolytic plasma oxidation process on a mg alloy for corrosion protection. Thin Solid Films 494:296–301

    Article  CAS  Google Scholar 

  12. Guo HL, Huan C, Xing QW, Hua P, Gu LZ, Bin Z, Heon JL, Si ZY (2010) Effect of additives on structure and corrosion resistance of plasma electrolytic oxidation coatings on AZ91D magnesium alloy in phosphate based electrolyte. Surf Coat Technol 205:36–40

    Article  Google Scholar 

  13. Sreekanth D, Rameshbabu N, Venkateswarlu K (2012) Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram Int 38:4607–4615

    Article  CAS  Google Scholar 

  14. Duan H, Yan C, Wang F (2007) Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim Acta 52:3785–3793

    Article  CAS  Google Scholar 

  15. Junghoon L, Yonghwan K, Wonsub C (2012) Effect of Ar bubbling during plasma electrolytic oxidation of AZ31B magnesium alloy in silicate electrolyte. Appl Surf Sci 259:454–459

    Article  Google Scholar 

  16. Li W, Li C, Wen F (2011) Characterization of plasma electrolytic oxidation films formed on AZ31 magnesium alloys by different voltage parameters. Adv Mat Res 168–170:1203–1208

    Article  Google Scholar 

  17. Hussein RO, Northwood DO, Nie X (2012) The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. J Alloy Compd 541:41–48

    Article  CAS  Google Scholar 

  18. Bala Srinivasan P, Liang J, Blawert C, Störmer M, Dietzel W (2009) Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Appl Surf Sci 255:4212–4218

    Article  CAS  Google Scholar 

  19. Kazanski B, Kossenko A, Zinigrad M, Lugovskoy A (2013) Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy. Appl Surf Sci 287:461–466

    Article  CAS  Google Scholar 

  20. Ma C, Zhang M, Yuan Y, Jing X, Bai X (2012) Tribological behavior of plasma electrolytic oxidation coatings on the surface of Mg-8Li-1Al alloy. Tribol Int 47:62–68

    Article  CAS  Google Scholar 

  21. Gun KY, Seok LE, Hyuk SD (2014) Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: microstructural characteristics and electrochemical responses. J Alloy Compd 586:356–361

    Google Scholar 

  22. Ma C, Lu Y, Sun P, Yuan Y, Jing X, Zhang M (2011) Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte. Surf Coat Technol 206:287–294

    Article  CAS  Google Scholar 

  23. Seah MP, Briggs D, Seah J (1990) Practical surface analysis, auger and X-ray photoelectron spectroscopy. Wiley & Sons 1:543

    Google Scholar 

  24. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 55:4709

    Article  Google Scholar 

  25. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elemer Corp, Eden Prairie

    Google Scholar 

  26. X-ray photoelectron spectroscopy database 20, Version 3.0, National Institute of Standards and Technology, Gaithersburg

  27. http://srdata.nist.gov/XPS

  28. Glisenti A, Frasson A, Galenda A, Natile MM (2010) Au/CeO2 supported nanocatalysts: interaction with methanol. Nanoscie Nanotechn Letters 2(3):213–219

    Article  CAS  Google Scholar 

  29. Natile MM, Tomaello F, Glisenti A (2006) WO3/CeO2 nanocomposite powders; synthesis, characterization, and reactivity. Chem Mater 18:3270–3280

    Article  CAS  Google Scholar 

  30. Teterin YA, Teterin AY, Lebedev AM, Utkin IO (1998) The XPS spectra of cerium compounds containing oxygen. J Electron Spectr Rel Phenom 88–91:275–279

    Article  Google Scholar 

  31. Wang S, Qiao Z, Wang W, Qian Y (2000) XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis. J Alloys Compd 305:121–124

    Article  CAS  Google Scholar 

  32. Felker DL, Sherwood PMA (2002) Magnesium phosphate (Mg3(PO4)2) by XPS. Surf Sci Spectra 9:83–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pezzato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezzato, L., Brunelli, K., Gross, S. et al. Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys. J Appl Electrochem 44, 867–879 (2014). https://doi.org/10.1007/s10800-014-0695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0695-x

Keywords

Navigation