Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 5, pp 655–665 | Cite as

Hybrid photochromic multilayer films based on chitosan and europium phosphomolybdate

  • Diana M. Fernandes
  • Cristina Freire
Research Article

Abstract

Multilayer films based on chitosan and K11[EuIII(PMo11O39)2] were prepared on different substrates using the layer-by-layer method. UV–Vis spectra of the films showed regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the presence of chitosan and phosphomolybdate within the films and scanning electron microscopy images revealed a completely covered surface with a roughened texture. The film electrochemical responses and permeability were studied by cyclic voltammetry. Films revealed four surface-confined Mo-based reduction processes (MoVI → MoV). Studies with [Fe(CN)6]3−/4− and [Ru(NH3)6]3+/2+ showed that film permeability depended on the film thickness and on the charge of the outer layer. Irradiation of films with UV light confirmed their photochromic properties through the colour change from transparent to blue. Colouration–discolouration cycles could be repeated up to 36 cycles without the loss of optical contrast, indicating high film photochromic stability. These results provided valuable insights for exploring the potential application of polyoxometalate-based films for the construction of photochromic devices.

Keywords

Layer-by-layer films Phosphomolybdates Electrochemistry Photochromism Chitosan 

Notes

Acknowledgments

The authors thank Fundação para a Ciência e a Tecnologia (FCT) and COMPETE for financial support through grant no. PEst-C/EQB/LA0006/2011, PTDC/CTM-POL/0813/2012, NORTE-07-0124-FEDER-000067–Nanochemistry and to COST Action CM-1203 PoCheMoN. DMF also thanks FCT for her PD grant SFRH/BPD/74872/2010.

Supplementary material

10800_2014_673_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (PDF 350 kb)

References

  1. 1.
    Tsivgoulis GM, Lehn JM (1995) Photonic molecular devices—reversibly photoswitchable fluorophores for nondesctructive readout for optical memory. Angew Chem Int Ed Engl 34(10):1119–1122CrossRefGoogle Scholar
  2. 2.
    Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98(1):307–325. doi: 10.1021/cr9604043 CrossRefGoogle Scholar
  3. 3.
    He T, Yao JN (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51(6):810–879. doi: 10.1016/j.pmatsci.2005.12.001 CrossRefGoogle Scholar
  4. 4.
    Tian H, Yang SJ (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33(2):85–97. doi: 10.1039/b302356g CrossRefGoogle Scholar
  5. 5.
    Raymo FM, Tomasulo M (2005) Electron and energy transfer modulation with photochromic switches. Chem Soc Rev 34(4):327–336. doi: 10.1039/b400387j CrossRefGoogle Scholar
  6. 6.
    He T, Yao JN (2004) Photochromism in transition-metal oxides. Res Chem Intermed 30(4–5):459–488. doi: 10.1163/1568567041280890 CrossRefGoogle Scholar
  7. 7.
    Pardo R, Zayat M, Levy D (2011) Photochromic organic–inorganic hybrid materials. Chem Soc Rev 40(2):672–687. doi: 10.1039/c0cs00065e CrossRefGoogle Scholar
  8. 8.
    Wang MS, Xu G, Zhang ZJ, Guo GC (2010) Inorganic–organic hybrid photochromic materials. Chem Commun 46(3):361–376. doi: 10.1039/b917890b CrossRefGoogle Scholar
  9. 9.
    Liu SQ, Mohwald H, Volkmer D, Kurth DG (2006) Polyoxometalate-based electro- and photochromic dual-mode devices. Langmuir 22(5):1949–1951. doi: 10.1021/la0523863 CrossRefGoogle Scholar
  10. 10.
    Liu SQ, Kurth DG, Bredenkotter B, Volkmer D (2002) The structure of self-assembled multilayers with polyoxometalate nanoclusters. J Am Chem Soc 124(41):12279–12287. doi: 10.1021/ja026946l CrossRefGoogle Scholar
  11. 11.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi: 10.1126/science.277.5330.1232 CrossRefGoogle Scholar
  12. 12.
    Guo WH, Xu L, Li FY, Xu BB, Yang YB, Liu SP, Sun ZX (2010) Chitosan-assisted fabrication and electrocatalytic activity of the composite film electrode of heteropolytungstate/carbon nanotubes. Electrochim Acta 55(5):1523–1527. doi: 10.1016/j.electacta.2009.10.003 CrossRefGoogle Scholar
  13. 13.
    Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32(7):1711–1726. doi: 10.1016/j.msec.2012.05.009 CrossRefGoogle Scholar
  14. 14.
    Ekrami-Kakhki M-S, Khorasani-Motlagh M, Noroozifar M (2011) Platinum nanoparticles self-assembled onto chitosan membrane as anode for direct methanol fuel cell. J Appl Electrochem 41(5):527–534CrossRefGoogle Scholar
  15. 15.
    Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131. doi: 10.1016/j.tifs.2006.10.022 CrossRefGoogle Scholar
  16. 16.
    Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51. doi: 10.1016/s0924-2244(99)00017-5 CrossRefGoogle Scholar
  17. 17.
    Alpat Ş, Alpat SK, Dursun Z, Telefoncu A (2009) Development of a new biosensor for mediatorless voltammetric determination of hydrogen peroxide and its application in milk samples. J Appl Electrochem 39(7):971–977CrossRefGoogle Scholar
  18. 18.
    Liu SP, Xu L, Li FY, Guo WH, Xing Y, Sun ZX (2011) Carbon nanotubes-assisted polyoxometalate nanocomposite film with enhanced electrochromic performance. Electrochim Acta 56(24):8156–8162. doi: 10.1016/j.electacta.2011.05.131 CrossRefGoogle Scholar
  19. 19.
    Fan DW, Hao JC (2009) Fabrication and electrocatalytic properties of chitosan and keplerate-type polyoxometalate Mo72Fe30 hybrid films. J Phys Chem B 113(21):7513–7516. doi: 10.1021/jp901413w CrossRefGoogle Scholar
  20. 20.
    Feng YH, Han ZG, Peng J, Lu J, Xue B, Li L, Ma HY, Wang EB (2006) Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan. Mater Lett 60(13–14):1588–1593. doi: 10.1016/j.matlet.2005.11.069 CrossRefGoogle Scholar
  21. 21.
    Gaunt AJ, May I, Sarsfield MJ, Collison D, Helliwell M, Denniss IS (2003) A rare structural characterisation of the phosphomolybdate lacunary anion, [PMo11O39]7−. Crystal structures of the Ln(III) complexes, (NH4)11 [Ln(PMo11O39)2]·16H2O (Ln = Ce-III, Sm-III, Dy-III or Lu-III). Dalton Trans 13:2767–2771. doi: 10.1039/b301995k CrossRefGoogle Scholar
  22. 22.
    Copping R, Gaunt AJ, May I, Sarsfield MJ, Collison D, Helliwell M, Denniss IS, Apperley DC (2005) Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11−. Dalton Trans 7:1256–1262. doi: 10.1039/b500408j CrossRefGoogle Scholar
  23. 23.
    Fernandes DM, Cunha-Silva L, Ferreira RAS, Balula SS, Carlos LD, de Castro B, Freire C (2013) Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Adv 3(37):16697–16707. doi: 10.1039/c3ra41697f CrossRefGoogle Scholar
  24. 24.
    Camilo CS, dos Santos DS, Rodrigues JJ, Vega ML, Campana SP, Oliveira ON, Mendonca CR (2003) Surface-relief gratings and photoinduced Birefringence in layer-by-layer films of chitosan and an azopolymer. Biomacromolecules 4(6):1583–1588. doi: 10.1021/bm034220r CrossRefGoogle Scholar
  25. 25.
    Koenig JF, Martel D (2008) Applying UV–Vis spectroscopy to step-by-step molecular self assembly on surface: does it bring pertinent information? Thin Solid Films 516(12):3865–3872. doi: 10.1016/j.tsf.2007.07.137 CrossRefGoogle Scholar
  26. 26.
    Cheng L, Cox JA (2002) Nanocomposite multilayer film of a ruthenium metallodendrimer and a Dawson-type polyoxometalate as a bifunctional electrocatalyst. Chem Mater 14(1):6–8. doi: 10.1021/cm010854y CrossRefGoogle Scholar
  27. 27.
    Finsgar M, Fassbender S, Hirth S, Milosev I (2009) Electrochemical and XPS study of polyethyleneimines of different molecular sizes as corrosion inhibitors for AISI 430 stainless steel in near-neutral chloride media. Mater Chem Phys 116(1):198–206. doi: 10.1016/j.matchemphys.2009.03.010 CrossRefGoogle Scholar
  28. 28.
    Perez-Romo P, Potvin C, Manoli JM, Chehimi MM, Djega-Mariadassou G (2002) Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides: synthesis, characterization, and determination of turnover rates for propene hydrogenation. J Catal 208(1):187–196. doi: 10.1006/jcat 2002.3564CrossRefGoogle Scholar
  29. 29.
    Feng W, Ding YS, Liu Y, Lu R (2006) The photochromic process of polyoxometalate-based nanocomposite thin film by in situ AFM and spectroscopy. Mater Chem Phys 98(2–3):347–352. doi: 10.1016/j.matchemphys.2005.09.037 CrossRefGoogle Scholar
  30. 30.
    Fernandes DM, Juliao D, Pereira C, Ananias D, Balula SS, Freire C (2012) Hybrid layer-by-layer films based on lanthanide-bridged silicotungstates and poly(ethylenimine). Colloids Surf A 415:302–309. doi: 10.1016/j.colsurfa.2012.09.053 CrossRefGoogle Scholar
  31. 31.
    Le FH, Wang LX, Jia W, Jia DZ, Bao SJ (2012) Synthesis and photoluminescence of Eu2+ by co-doping Eu3+ and Cl in Sr2P2O7 under air atmosphere. J Alloys Compd 512(1):323–327. doi: 10.1016/j.jallcom.2011.09.088 CrossRefGoogle Scholar
  32. 32.
    Durr H, Bouas-Laurent H (1990) Photochromism: molecules and systems. Elsevier, New YorkGoogle Scholar
  33. 33.
    Fernandes DM, Cunha-Silva L, Ferreira RAS, Balula SS, Carlos LD, Castro B, Freire C (2013) Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Adv. doi: 10.1039/C3RA41697F Google Scholar
  34. 34.
    Fernandes DM, Brett CMA, Cavaleiro AMV (2011) Layer-by-layer self-assembly and electrocatalytic properties of poly(ethylenimine)-silicotungstate multilayer composite films. J Solid State Electrochem 15(4):811–819. doi: 10.1007/s10008-010-1154-1 CrossRefGoogle Scholar
  35. 35.
    Harris JJ, Bruening ML (2000) Electrochemical and in situ ellipsometric investigation of the permeability and stability of layered polyelectrolyte films. Langmuir 16(4):2006–2013. doi: 10.1021/la990620h CrossRefGoogle Scholar
  36. 36.
    Pardo-Yissar V, Katz E, Lioubashevski O, Willner I (2001) Layered polyelectrolyte films on Au electrodes: characterization of electron-transfer features at the charged polymer interface and application for selective redox reactions. Langmuir 17(4):1110–1118. doi: 10.1021/la000729l CrossRefGoogle Scholar
  37. 37.
    Farhat TR, Schlenoff JB (2001) Ion transport and equilibria in polyelectrolyte multilayers. Langmuir 17(4):1184–1192. doi: 10.1021/la001298 CrossRefGoogle Scholar
  38. 38.
    Fernandes DM, Carapuca HM, Brett CMA, Cavaleiro AMV (2010) Electrochemical behaviour of self-assembly multilayer films based on iron-substituted alpha-Keggin polyoxotungstates. Thin Solid Films 518(21):5881–5888. doi: 10.1016/j.tsf.2010.05.065 CrossRefGoogle Scholar
  39. 39.
    Chu Y, Kim J, Choi S, Rhee CK (2011) Electron transfer behavior at polyoxometalate-adsorbed alkanethiol self-assembled monolayers. Appl Surf Sci 257(22):9490–9497. doi: 10.1016/j.apsusc.2011.06.042 CrossRefGoogle Scholar
  40. 40.
    Gao SY, Li TH, Li X, Cao R (2006) Electrochemical behavior and multilayer films of the sandwich-type polyoxotungstate complex {K10Co4(H2O)2(PW9O34)2}. Mater Lett 60(29–30):3622–3626. doi: 10.1016/j.matlet.2006.03.104 CrossRefGoogle Scholar
  41. 41.
    Barreira SVP, Garcia-Morales V, Pereira CM, Manzanares JA, Silva F (2004) Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes. J Phys Chem B 108(46):17973–17982. doi: 10.1021/jp0466845 CrossRefGoogle Scholar
  42. 42.
    Yang GC, Gong H, Yang R, Guo HW, Wang YZ, Liu BF, Dong S (2006) Modification of electrode surface through electrospinning followed by self-assembly multilayer film of polyoxometalate and its photochromic. Electrochem Commun 8(5):790–796. doi: 10.1016/j.elecom.2006.03.019 CrossRefGoogle Scholar
  43. 43.
    Qi W, Li HL, Wu LX (2008) Stable photochromism and controllable reduction properties of surfactant-encapsulated polyoxometalate/silica hybrid films. J Phys Chem B 112(28):8257–8263. doi: 10.1021/jp801188e CrossRefGoogle Scholar
  44. 44.
    Chen ZH, Loo BH, Ma Y, Cao YW, Ibrahim A, Yao JN (2004) Photochromism of novel molybdate/alkylamine composite thin films. ChemPhysChem 5(7):1020–1026. doi: 10.1002/cphc.200400041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.REQUIMTE/Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations