Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 4, pp 481–489 | Cite as

Effect of unequal load of carbon xerogel in electrodes on the electrochemical performance of asymmetric supercapacitors

  • E. G. Calvo
  • F. Lufrano
  • A. Arenillas
  • A. Brigandì
  • J. A. Menéndez
  • P. Staiti
Research Article

Abstract

This paper investigates the electrochemical performance of asymmetric supercapacitors in an environmentally friendly aqueous electrolyte (1.0 mol L−1 sodium sulfate solution). The asymmetric configuration is based on the use of a highly porous carbon xerogel as active material in both the positive and negative electrodes, but the carbon xerogel loading in each electrode has been substantially modified. This configuration leads to an increase in the operational voltage window up to values of 1.8 V and consequently to a higher specific capacitance (200 F g−1) and energy density (~25 Wh kg−1). Four different mass ratios were employed (1, 1.5, 2 and 3), and the electrochemical response of the cells was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge and impedance spectroscopy. The results demonstrate that the optimal carbon mass ratio in the electrodes is about 2.0 because in these conditions the devices are able to operate with a maximum cell voltage of 1.8 V and with a high electrical efficiency.

Keywords

Carbon xerogel electrodes Asymmetric configuration Electrode loading High voltage Aqueous electrolyte 

Notes

Acknowledgments

The authors of INCAR-CSIC would like to acknowledge the financial support provided by the Ministerio de Economía y Competitividad (Ref. MAT-2011-23733 and IPT-2012-0689-420000). The authors of CNR-ITAE acknowledge the financial support provided by Ministero dello Sviluppo Economico within the framework of ‘Accordo ti programma CNR-MSE’, project ‘Sistema electtrochimici per l′accumulo dell′energia’). The COST Organization (COST Action MP1004: Hybrid Energy Storage Devices and Systems for Mobile and Stationary Applications) is also greatefully acknowledged. E.G. Calvo also thanks Ficyt (Spain) for a predoctoral research grant.

References

  1. 1.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  2. 2.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  3. 3.
    Xin L, Bingqing W (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle R, Wallace M, Cychosz KA, Thommes DS, Stach EA, Ruoff RF (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  5. 5.
    Demarconnay L, Calvo EG, Timperman L, Anouti M, Lemordant D, Raymundo-Piñero E, Arenillas A, Menéndez JA, Béguin F (2013) Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochim Acta 108:361–368CrossRefGoogle Scholar
  6. 6.
    Frackowiak E, Abbas Q, Béguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22:226–240CrossRefGoogle Scholar
  7. 7.
    Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819CrossRefGoogle Scholar
  8. 8.
    Lufrano F, Staiti P, Calvo EG, Juárez-Pérez EJ, Menéndez JA, Arenillas A (2011) Carbon xerogel and manganeses oxide capacitive materials for advanced supercapacitors. Int J Electrochem Sci 6:596–612Google Scholar
  9. 9.
    Yuan A, Zhang Q (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8:1173–1178CrossRefGoogle Scholar
  10. 10.
    Wang YG, Xia YY (2005) A new concept hybrid electrochemical supercapacitor: carbon/LiMn2O4 aqueous system. Electrochem Commun 7:1138–1142CrossRefGoogle Scholar
  11. 11.
    Salinas-Torres D, Sieben JM, Lozano-Castelló D, Cazorla-Amorós D, Morallón E (2013) Asymmetric hybrid capacitors base bon activated carbon and activated carbon fibre-PANI electrodes. Electrochim Acta 89:326–333CrossRefGoogle Scholar
  12. 12.
    Chu HY, Lai QY, Hao YJ, Zhao Y, Xu XY (2009) Study of electrochemical properties and the charge/discharge mechanism for Li4Mn5O12/MnO2-AC hybrid supercapacitor. J Appl Electrochem 39:2007–2013CrossRefGoogle Scholar
  13. 13.
    Chae JH, Chen GZ (2012) 1.9 V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochim Acta 86:248–254CrossRefGoogle Scholar
  14. 14.
    Khomenko V, Raymundo-Piñero E, Béguin F (2010) A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 195:4234–4241CrossRefGoogle Scholar
  15. 15.
    Lazzari M, Soavi F, Mastragostino M (2008) High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. J Power Sources 178:490–496CrossRefGoogle Scholar
  16. 16.
    Staiti P, Arenillas A, Lufrano F, Menéndez JA (2012) High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. J Power Sources 214:137–141CrossRefGoogle Scholar
  17. 17.
    Arenillas A, Menéndez JA, Zubizarreta L, Calvo EG (2009) Procedimiento de obtención de xerogeles orgánicos de porosidad controlada. Patent ES 2 354 782Google Scholar
  18. 18.
    Calvo EG, Juárez-Pérez EJ, Menéndez JA, Arenillas A (2011) Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. J Colloid Interface Sci 357:541–547CrossRefGoogle Scholar
  19. 19.
    Calvo EG, Lufrano F, Staiti P, Brigandì Arenillas A, Menéndez JA (2013) Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J Power Sources 241:776–782CrossRefGoogle Scholar
  20. 20.
    Fang QL, Evans DA, Roberson SL, Zheng JP (2001) Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors. J Electrochem Soc 148:A833–A837CrossRefGoogle Scholar
  21. 21.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 39:1774–1785CrossRefGoogle Scholar
  22. 22.
    Li X, Liu L, Meng Q, Cao B (2012) Synthesis and characterization of carbon aerogels doped with the anatase form of titanium oxide. J Appl Electrochem 42:249–254CrossRefGoogle Scholar
  23. 23.
    Rasines G, Lavela P, Macías C, Haro M, Ania CO, Tirado JL (2012) Electrochemical response of carbon aerogel electrodes in saline water. J Electroanal Chem 671:92–98CrossRefGoogle Scholar
  24. 24.
    Jurewicz K, Frackowiak E, Béguin F (2004) Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl Phys A 78:981–987CrossRefGoogle Scholar
  25. 25.
    Lufrano F, Staiti P, Minotuli (2004) Influence of Nafion content in electrodes on performance of carbon supercapacitors. J Electrochem Soc 151:A64–A68CrossRefGoogle Scholar
  26. 26.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  27. 27.
    Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Instituto Nacional del Carbón CSICOviedoSpain
  2. 2.Istituto di Tecnologie Avanzate per L′Energia “Nicola Giordano”CNR-ITAEMessinaItaly

Personalised recommendations