Skip to main content
Log in

Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum electrocatalysts were prepared using PtCl4 as a starting material and 1-decylamine, N,N-dimethyldecylamine, 1-dodecylamine, N,N-dimethyldodecylamine, 1-hexadecylamine, and 1-octadecylamine as surfactants. These surfactants were used for the first time in this synthesis to determine whether the primary and/or tertiary structure and/or chain length of the surfactants, affects the size and/or activity of the catalysts in C1–C3 alcohol electro-oxidation reactions. Electrochemical measurements (cyclic voltammetry and chronoamperometry) indicated that the highest electrocatalytic performance was observed for the Pt nanocatalysts that were stabilized by N,N-dimethyldecylamine, and this has a tertiary amine structure with a short chain length (R = C10H21). The high performance may be due to the high electrochemical surface area, Pt(0)/Pt(IV) ratio, %Pt utility, and roughness factor (R f). X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used to determine the parameters that affect the catalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costamagna P, Srinivasan S (2001) J Power Sources 102:242–252

    Article  CAS  Google Scholar 

  2. Ren X, Zelenay P, Thomas A, Davey J, Gottesfeld S (2000) J Power Sources 86:111

    Article  CAS  Google Scholar 

  3. Wasmus S, Kuver A (2000) Electrochim Acta 45:4319

    Article  Google Scholar 

  4. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735

    Article  CAS  Google Scholar 

  5. Sumodjo PTA, Silva EJ, Rabochai T (1989) J Electroanal Chem 271:305

    Article  CAS  Google Scholar 

  6. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger J-M, Lamy C (1998) J Electroanal Chem 444:41–53

    Article  CAS  Google Scholar 

  7. Rodrigues IA, De Souza JPI, Pastor E, Nart FC (1997) Langmuir 13:6829

    Article  CAS  Google Scholar 

  8. Delime F, Leger J-M, Lamy C (1999) J Appl Electrochem 29:1249

    Article  CAS  Google Scholar 

  9. Datta J, Sıngh S, Das S, Bandyopadhyay NR (2009) Bull Mater Sci 32(6):643

    Article  CAS  Google Scholar 

  10. Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P (2005) J Power Sources 140:50

    Article  CAS  Google Scholar 

  11. Lamy C, Belgsir EM, Leger JM (2001) J Appl Electrochem 31:799

    Article  CAS  Google Scholar 

  12. Qi Z, Kaufman A (2002) J Power Sources 112:121–129

    Article  CAS  Google Scholar 

  13. Cao D, Bergens SH (2003) J Power Sources 124:12–17

    Article  CAS  Google Scholar 

  14. Qi Z, Hollett M, Attia A, Kaufman A (2002) Electrochem Solid-State Lett 5:A129–A130

    Article  CAS  Google Scholar 

  15. Cao D, Bergens SH (2003) J Power Sources 124:12–17

    Article  CAS  Google Scholar 

  16. Wei ZD, Li L, Luo YH, Yan C, Sun CX, Yin GZ, Shen PK (2006) J Phys Chem B 110:26055

    Article  CAS  Google Scholar 

  17. Rodrigues IA, De Souza JPI, Pastor E, Nart FC (1997) Langmuir 13:6829

    Article  CAS  Google Scholar 

  18. Şen F, Gökağaç G (2007) J Phys Chem C 111:1467–1473

    Article  Google Scholar 

  19. Liu Z, Ling XY, Su X, Lee JY (2004) J Phys Chem B 108:8234–8240

    Article  CAS  Google Scholar 

  20. Klug H, Alexander L (1954) X-ray diffraction procedures, 1st edn. Wiley, New York

    Google Scholar 

  21. Kawasaki H, Uota M, Yoshimura T, Fujikawa D, Sakai G, Kijima T (2006) J Colloid Interface Sci 300:149–154

    Article  CAS  Google Scholar 

  22. Prabhuram J, Wang X, Hui CL, Hsing I-M (2003) J Phys Chem B 107:11057–11064

    Article  CAS  Google Scholar 

  23. Şen F, Gökağaç G (2007) J Phys Chem C 111:1467–1473

    Article  Google Scholar 

  24. Yonezawa T, Toshima N, Wakai C, Nakahara M, Nishinaka M, Tominaga T, Nomura H (2000) Colloids Surf A 169:35–45

    Article  CAS  Google Scholar 

  25. Liang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384–5389

    Article  Google Scholar 

  26. Sen F, Sen S, Gokagac G (2011) Phys Chem Chem Phys 13(4):1676–1684

    Article  CAS  Google Scholar 

  27. Liu Z, Yu C, Russakova IA, Huang D, Strasser P (2008) Top Catal 49:241–250

    Article  CAS  Google Scholar 

  28. Huang J, Yang H, Huang Q, Tang Y, Lu T, Akins DL (2004) J Electrochem Soc 151:A1810

    Article  CAS  Google Scholar 

  29. Kennedy BJ, Hamnett A (1990) J Electroanal Chem 283:271

    Article  CAS  Google Scholar 

  30. Sen F, Gokagac G (2007) J Phys Chem C 111(15):5715–5720

    Article  CAS  Google Scholar 

  31. Deivaraj TC, Chen WX, Lee JY (2003) J Mater Chem 13:2555

    Article  CAS  Google Scholar 

  32. Watanabe M, Uchida M, Motoo S (1987) J Electroanal Chem 229:395–406

    Article  CAS  Google Scholar 

  33. Goodenough JB, Hamnett A, Kennedy BJ, Manoharan R, Weeks SA (1988) J Electroanal Chem 240:133–145

    Article  CAS  Google Scholar 

  34. Gökağaç G, Kennedy BJ, Cashion JD, Brown LJ (1993) J Chem Soc, Faraday Trans 89:151–157

    Article  Google Scholar 

  35. Peuckert M (1984) Electrochim Acta 29(10):1315–1320

    Article  CAS  Google Scholar 

  36. Peuckert M, Bonzel HP (1984) Surf Sci 145(1):239–259

    Article  CAS  Google Scholar 

  37. Liu ZL, Lee JY, Han M, Chen WX, Gan LM (2002) J Mater Chem 12:2453

    Article  CAS  Google Scholar 

  38. Wang ZB, Yin GP, Shi PF (2005) J Electrochem Soc 152:A2406–A2412

    Article  CAS  Google Scholar 

  39. Sen Gupta S, Datta J (2005) J Chem Sci 117:337–344

    Article  CAS  Google Scholar 

  40. Kim YT, Mitani T (2006) J Catal 238:394–401

    Article  CAS  Google Scholar 

  41. Kadirgan F, Beyhan S, Atilan T (2009) Int J Hydrogen Energy 34(10):4312–4320

    Article  CAS  Google Scholar 

  42. Watanabe M, Uchida M, Motoo S (1987) J Electroanal Chem 229:395

    Article  CAS  Google Scholar 

  43. Otomo J, Li X, Kobayashi T, Wen C-J, Nagamoto H, Takahashi H (2004) J Electroanal Chem 573:99

    CAS  Google Scholar 

  44. Ozturk Z, Sen F, Sen S, Gokagac G (2012) J Mater Sci 47:8134–8144

    Article  CAS  Google Scholar 

  45. Ertan S, Sen F, Sen S, Gokagac G (2012) J Nanopart Res 14:922–926

    Article  Google Scholar 

  46. Sen F, Gokagac G, Sen S (2013) J Nanopart Res. doi:10.1007/s11051-013-1979-5

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge TÜBİTAK (Türkiye Bilimsel ve Teknik Araştırma Kurumu, Grant 111T162) for financial support and the Central Laboratory of the Middle East Technical University for acquiring XPS, TEM, and elemental analyses. The authors also thank Dr. Michael W. Pitcher for editing and proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatih Şen or Gülsün Gökağaç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şen, F., Gökağaç, G. Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity. J Appl Electrochem 44, 199–207 (2014). https://doi.org/10.1007/s10800-013-0631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0631-5

Keywords

Navigation