Journal of Applied Electrochemistry

, Volume 44, Issue 4, pp 467–474 | Cite as

The influence of carbon content on the lithium diffusion and electrochemical properties of lithium vanadium phosphate

  • Nils Böckenfeld
  • Andrea Balducci
Research Article


The influence of carbon content and porosity of lithium vanadium phosphate, Li3V2(PO4)3, on its diffusion properties and electrochemical performance was examined by GITT and galvanostatic charge/discharge experiments. The diffusion coefficient of Li3V2(PO4)3, as determined by GITT measurements, appears relatively high, thus making this material interesting also for high power application. Moreover, the results of this study clearly show that the porosity and the carbon content of the electrode materials is an important factor affecting the diffusion as well as the electrochemical performance of Li3V2(PO4)3. It was demonstrated that excessive carbon coating may lead to kinetic hindrances but may also contribute specific capacity in anode materials in voltage regions below 1.0 V versus Li/Li+.


Lithium vanadium phosphate Diffusion coefficient Carbon 



The authors wish to thank the University of Muenster, the Ministry of Innovation, Science and Research of North Rhine-Westphalia (MIWF) within the project “Superkondensator und Lithium-Ionen-Hybrid-Superkondensatoren auf der Basis ionischer Flüssigkeiten”.


  1. 1.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRefGoogle Scholar
  2. 2.
    Song HK, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20:3818–3834CrossRefGoogle Scholar
  3. 3.
    Yin SC, Grondey H, Strobel P, Huang H, Nazar LF (2003) Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. J Am Chem Soc 125:326–327CrossRefGoogle Scholar
  4. 4.
    Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135CrossRefGoogle Scholar
  5. 5.
    Saıdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett 5:A149–A151CrossRefGoogle Scholar
  6. 6.
    Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14:1525–1528CrossRefGoogle Scholar
  7. 7.
    Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C (2003) A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J Power Sour 119:278–284CrossRefGoogle Scholar
  8. 8.
    Rui XH, Yesibolati N, Chen CH (2011) Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J Power Sour 196:2279–2282CrossRefGoogle Scholar
  9. 9.
    Böckenfeld N, Balducci A (2013) On the use of lithium vanadium phosphate in high power devices. J Power Sour 235:265–273CrossRefGoogle Scholar
  10. 10.
    Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH (2011) Determination of the chemical diffusion coefficient of Li + in intercalation-type Li3V2(PO4)3 anode material. Solid State Ion 187:58–63CrossRefGoogle Scholar
  11. 11.
    Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390CrossRefGoogle Scholar
  12. 12.
    Lee S, Park SS (2012) Atomistic simulation study of monoclinic Li3V2 (PO4)3 as a cathode material for lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C 116:25190–25197CrossRefGoogle Scholar
  13. 13.
    Davis LJ, Goward GR (2013) Differentiating lithium ion hopping rates in vanadium phosphate versus vanadium fluorophosphate structures using 1D 6Li selective inversion NMR. J Phys Chem C 117:7981–7992CrossRefGoogle Scholar
  14. 14.
    Chang C, Xiang J, Shi X, Han X, Yuan L, Sun J (2008) Hydrothermal synthesis of carbon-coated lithium vanadium phosphate. Electrochim Acta 54:623–627CrossRefGoogle Scholar
  15. 15.
    Ren MM, Zhou Z, Gao XP, Peng WX, Wei JP (2008) Core-shell Li3V2(PO4)3@ C composites as cathode materials for lithium-ion batteries. J Phys Chem 112:5689–5693Google Scholar
  16. 16.
    Zhu XJ, Liu YX, Geng LM, Chen LB (2008) Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol–gel method. J Power Sour 184:578–582CrossRefGoogle Scholar
  17. 17.
    Huang B, Fan X, Zheng X, Lu M (2011) Synthesis and rate performance of lithium vanadium phosphate as cathode material for Li-ion batteries. J Alloy Compd 509:4765–4768CrossRefGoogle Scholar
  18. 18.
    Teng F, Hu ZH, Ma XH, Zhang LC, Ding CX, Yu Y, Chen CH (2013) Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim Acta 91:43–49CrossRefGoogle Scholar
  19. 19.
    Rui XH, Li C, Chen CH (2009) Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim Acta 54:3374–3380CrossRefGoogle Scholar
  20. 20.
    Böckenfeld N, Placke T, Winter M, Passerini S, Balducci A (2012) The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochim Acta 76:130–136CrossRefGoogle Scholar
  21. 21.
    Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-y V2 (PO4)3. J Am Chem Soc 125:10402–10411CrossRefGoogle Scholar
  22. 22.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion 148:45–51CrossRefGoogle Scholar
  23. 23.
    Shaju KM, Subba Rao GV, Chowdari BVR (2003) EIS and GITT studies on oxide cathodes, O2-Li(2/3) + x (Co0.15Mn0.85) O 2 (x = 0 and 1/3). Electrochim Acta 48:2691–2703CrossRefGoogle Scholar
  24. 24.
    Shaju KM, Rao GS, Chowdari BVR (2003) Li ion kinetic studies on spinel cathodes, Li (M1/6Mn11/6) O4 (M = Mn, Co., CoAl) by GITT and EIS. J Mater Chem 13:106–113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.MEET Battery Research Centre, Institute of Physical ChemistryUniversity of MünsterMuensterGermany

Personalised recommendations