Journal of Applied Electrochemistry

, Volume 43, Issue 8, pp 783–788 | Cite as

Synthesis and properties of novel phenylethynyl-containing organodisulfide as cathode material for secondary lithium batteries

  • Zuxi Jin
  • Hai Zhong
  • Shixi Li
  • Zaoying Li
Original Paper


A novel phenylethynyl-containing conjugative organodisulfide compound 9-trimethylsilane ethynyl-5,8-dihydro-lH,4H-2,3,6,7-tetrathia-anthracene (TMSEDTTA) was synthesized by a facile preparation method, characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Raman spectrum, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA), and was tested as cathode active material in rechargeable lithium batteries. The electrochemical properties of S–S bonds redox behavior in the organodisulfides were investigated in 1.0 M LiClO4/EC/DMC (1:1, v/v) solution. The system has many advantages, such as high theoretical charge density (ca. 365 mAh g−1), fast redox process and enhanced reversibility. The fast redox process and enhanced reversibility are due to the intramolecular cleavage-recombination of the S–S bond, and the intramolecular electrocatalytic effect of phenylethynyl chain. The cyclic voltammogram of TMSEDTTA shows multiple redox peaks. The separation of the anodic and cathodic peak potentials for disulfide bond in TMSEDTTA is 0.4 V. The charge–discharge tests show an initial capacity of 330 mAh g−1 and the coulomb efficiency of more than 80 % after the electrochemical activation.


Secondary lithium batteries Organodisulfide Cathode material Synthesis Electrochemical properties 



This research was supported by the National Natural Science Foundation of China (No. 20872114).


  1. 1.
    Åhman M (2001) Energy 26:973CrossRefGoogle Scholar
  2. 2.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045CrossRefGoogle Scholar
  3. 3.
    Zheng W, Liu YW, Hu XG, Zhang CF (2006) Electrochim Acta 51:1330CrossRefGoogle Scholar
  4. 4.
    Visco SJ, Maile CC, Dejonghe LC, Armand MB (1989) J Electrochem Soc 136:661CrossRefGoogle Scholar
  5. 5.
    Liu ML, Visco SJ, DeJonghe LC (1989) J Electrochem Soc 136:2570CrossRefGoogle Scholar
  6. 6.
    Tsutsumi H, Okada K, Fujita K, Oishi T (1997) J Power Sources 68:735CrossRefGoogle Scholar
  7. 7.
    Amaike M, Iihama T (2006) Synth Met 156:239CrossRefGoogle Scholar
  8. 8.
    Uemachi H, Iwasa Y, Mitani T (2001) Electrochim Acta 46:2305CrossRefGoogle Scholar
  9. 9.
    Li YJ, Zhan H, Kong LB, Zhan CM, Zhou YH (2007) Electrochem Commun 9:1217CrossRefGoogle Scholar
  10. 10.
    Xue LJ, Li JX, Hu SQ, Zhang MX, Zhou YH, Zhan CM (2005) Electrochem Commun 5:903CrossRefGoogle Scholar
  11. 11.
    Weng GM, Su YZ, Liu ZQ, Zhang JH, Dong W, Xu CW (2009) Energy 34:1351CrossRefGoogle Scholar
  12. 12.
    Wang GC, Yang XF, Sun YH, Bao H, Li XW (2009) Macromol Chem Phys 210:2118CrossRefGoogle Scholar
  13. 13.
    Inamasu T, Yoshitoku D, Sumi-otorii Y, Tani H, Ono N (2003) J Electrochem Soc 150:A128CrossRefGoogle Scholar
  14. 14.
    Díaz FR, Sánchez CO, del Valle MA, Radic D, Bernède JC, Tregouët Y, Moliniè P (2000) Synth Met 110:71CrossRefGoogle Scholar
  15. 15.
    Su YZ, Dong W, Zhang JH, Song JH, Zhang YH, Gong KC (2007) Polymer 48:165CrossRefGoogle Scholar
  16. 16.
    Li JX, Zhan H, Zhou L, Deng SR, Li ZY, Zhou YH (2004) Electrochem Commun 6:515CrossRefGoogle Scholar
  17. 17.
    Deng SR, Kong LB, Hu GQ, Wu T, Li D, Zhou YH, Li ZY (2006) Electrochim Acta 51:2589CrossRefGoogle Scholar
  18. 18.
    Pope JM, Sato T, Shoji E, Oyama N, White KC, Buttry DA (2002) J Electrochem Soc 149:A939CrossRefGoogle Scholar
  19. 19.
    Wang P (2002) J Electrochem Soc 149:A1171CrossRefGoogle Scholar
  20. 20.
    Calvert JM, Weiner B, Smith JJ, Nowak RJ (1989) J Electrochem Soc 136:593CrossRefGoogle Scholar
  21. 21.
    Dhanalakshmi K, Sundararajan G (1999) Polymer Bull 42:683CrossRefGoogle Scholar
  22. 22.
    García-Cañadas J, Lafuente A, Rodríguez G, Marcos ML, Velasco JG (2004) J Electroanal Chem 565:57CrossRefGoogle Scholar
  23. 23.
    Wu J, Walker VEJ, Boyd RJ (2011) Chem Phys Lett 506:243CrossRefGoogle Scholar
  24. 24.
    Yusubov MS, Tveryakova EN, Krasnokutskaya EA, Perederyna IA, Zhdankin VV (2007) Synth Commun 37:1259CrossRefGoogle Scholar
  25. 25.
    De Vries JG (2012) Top Organomet Chem 42:1CrossRefGoogle Scholar
  26. 26.
    Naoi K, Kawase K, Mori M, Komiyama M (1997) J Electrochem Soc 144:L173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations