Journal of Applied Electrochemistry

, Volume 43, Issue 6, pp 567–574 | Cite as

Hydrothermal process synthesized electrocatalytic multi-walled carbon nanotubes-inserted gold composite microparticles toward ethanol oxidation reaction

  • Keqiang Ding
  • Yahui Wang
  • Lu Liu
  • Likun Liu
  • Xi Zhang
  • Zhanhu Guo
Original Paper


Composite microparticles consisting of large gold (Au) particles embedded with multi-walled carbon nanotubes (MWCNTs), denoted as MWCNTs-Au, have been successfully prepared by a facile hydrothermal process of gold(III) chloride (AuCl3) in a MWCNT aqueous solution. X-ray diffraction and scanning electron microscopy reveal that the obtained Au particles have an average diameter of about 500 nm and some MWCNTs are inserted into the Au particles. The MWCNTs-Au composites in the ethanol oxidation reaction (EOR) show quite different shape of cyclic voltammograms (CVs) toward EOR when compared to the previous CV reports on the pure Au substrate.


Hydrothermal Composites Au microparticles Multi-walled carbon nanotubes Ethanol oxidation reaction 



This work was financially supported by the National Natural Science Foundation of China (No. 21173066), Natural Science Foundation of Hebei Province of China (No.B2011205014). Z.G. acknowledges the support from the U.S. National Science Foundation (Nanoscale Interdisciplinary Research Team and Materials Processing and Manufacturing) under Grant CMMI 10-30755.


  1. 1.
    Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li ZY, Rycenga M (2010) J Am Chem Soc 132:2506CrossRefGoogle Scholar
  2. 2.
    Bu X, Yuan J, Song J, Han D, Niu L (2009) Mater Chem Phys 116:153CrossRefGoogle Scholar
  3. 3.
    Jiang Q, Jiang L, Qi J, Wang S, Sun G (2011) Electrochim Acta 56:6431CrossRefGoogle Scholar
  4. 4.
    Xu Z, Yu J, Liu G (2011) Electrochem Commun 13:1260CrossRefGoogle Scholar
  5. 5.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732CrossRefGoogle Scholar
  6. 6.
    Ding K, Yang G, Wei S, Mavinakuli P, Guo Z (2010) Ind Eng Chem Res 4911:415Google Scholar
  7. 7.
    Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW (2003) J Am Chem Soc 125:7148CrossRefGoogle Scholar
  8. 8.
    Terzi F, Zanardi C, Daolio S, Fabrizio M, Seeber R (2011) Electrochim Acta 56:3673CrossRefGoogle Scholar
  9. 9.
    Stoyanova A, Ivanov S, Tsakova V, Bund A (2011) Electrochim Acta 56:3693CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Suryanarayanan V, Nakazawa I, Yoshihara S, Shirakashi T (2004) Electrochim Acta 49:5235CrossRefGoogle Scholar
  11. 11.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  12. 12.
    Davies TJ, Hyde ME, Compton RG (2005) Angew Chem Int Ed 44:5121CrossRefGoogle Scholar
  13. 13.
    Ding KQ, Okajima T, Ohsaka T (2007) Electrochem 75:35CrossRefGoogle Scholar
  14. 14.
    Hu L, Hecht DS, Grüner G (2010) Fabr Prop Appl 110:5790Google Scholar
  15. 15.
    Wang Z, Gao G, Zhu H, Sun Z, Liu H, Zhao X (2009) Int J Hydrogen Energy 34:9334CrossRefGoogle Scholar
  16. 16.
    Zhang L, Jeong YI, Zheng S, Suh H, Kang DH, Kim I (2013) Langmuir. doi: 10.1021/la303634y Google Scholar
  17. 17.
    Quach AD, Crivat G, Tarr MA, Rosenzweig Z (2011) J Am Chem Soc 133:2028CrossRefGoogle Scholar
  18. 18.
    Xu J, Hua K, Sun G, Wang C, Lv X, Wang Y (2006) Electrochem Commun 8:982CrossRefGoogle Scholar
  19. 19.
    Guerra-Balcázar M, Morales-Acosta D, Castaneda F, Ledesma-García J, Arriaga LG (2010) Electrochem Commun 12:864CrossRefGoogle Scholar
  20. 20.
    Radmilovic V, Gasteiger HA, Ross PN (1995) J Catal 154:98CrossRefGoogle Scholar
  21. 21.
    Bao C, Jin M, Lu R, Zhang T, Zhao Y (2003) Mater Chem Phys 82:812CrossRefGoogle Scholar
  22. 22.
    Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q (2011) Mater Lett 65:2989CrossRefGoogle Scholar
  23. 23.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Kodiweera NKAC, Stallworth PE, Greenbaum S, Bandosz TJ (2009) Carbon 47:1576CrossRefGoogle Scholar
  24. 24.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem Int Edit 45:2533CrossRefGoogle Scholar
  25. 25.
    Gu H, Rapole S, Huang Y, Cao D, Luo Z, Wei S, Guo Z (2013) J Mater Chem. doi: 10.1039/C2TA00550F Google Scholar
  26. 26.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 17:829CrossRefGoogle Scholar
  27. 27.
    Schessler HM, Karpovich DS, Blanchard GJ (1996) J Am Chem Soc 118:9645CrossRefGoogle Scholar
  28. 28.
    Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) J Am Chem Soc 128:1796CrossRefGoogle Scholar
  29. 29.
    Strbac S, Avramov Ivic M (2009) Electrochim Acta 54:5408CrossRefGoogle Scholar
  30. 30.
    Tremiliosi-Filho G, Gonzalez ER, Motheo AJ, Belgsir EM, Léger JM, Lamy C (1998) Electroanal Chem 444:31CrossRefGoogle Scholar
  31. 31.
    de Lima RB, Varela H (2008) Gold Bull 41:15CrossRefGoogle Scholar
  32. 32.
    Shi J, Ci P, Wang F, Peng H, Yang P, Wang L, Wang Q, Chu PK (2011) Electrochim Acta 56:4197CrossRefGoogle Scholar
  33. 33.
    Hazzazi OA, Attard GA, Wells PB, Vidal-Iglesias FJ, Casadesus M (2009) J Electroanal Chem 625:123CrossRefGoogle Scholar
  34. 34.
    Grden M, Czerwinski A (2008) J Solid State Electrochem 12:375CrossRefGoogle Scholar
  35. 35.
    Grden M, Kotowski J, Czerwinski A (2000) J Solid State Electrochem 4:273CrossRefGoogle Scholar
  36. 36.
    Sun ZP, Zhang XG, Liang YY, Li HL (2009) Electrochem Commun 11:557CrossRefGoogle Scholar
  37. 37.
    Wang Q, Sun Z, Ding K (2010) J New Mater Electrochem Syst 13:119Google Scholar
  38. 38.
    Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) J Am Chem Soc 134:18177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science, Hebei Normal UniversityShijiazhuangPeople’s Republic of China
  2. 2.Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations