Skip to main content
Log in

Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The compatibility of glutaronitrile (GLN) and its mixtures with dimethyl carbonate (DMC) containing lithium bis-(trifluoromethane sulfonyl) imide (LiTFSI) with graphite negative electrode was investigated. GLN/DMC/LiTFSI electrolytes’ mixtures were characterized in terms of their ionic conductivities and viscosities. Cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy were performed in order to study the performances of the graphite anode in the GLN-based electrolytes. Results clearly indicate that no significant Li intercalation occurs in graphite in pure GLN, but when GLN/DMC (1:1 and 1:3 w/w) mixtures were used, the cycling ability of the electrode was improved as the coulombic efficiency reaches 98 and 99 %, respectively. Moreover, SEM images of the graphite anode indicate that after being cycled in GLN-based electrolytes, the electrode surface was homogenously covered by a Solid Layer Interface which insures a reversible lithiation of graphite anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spahr M, Goers D, Markle W, Dentzer J, Wursig A, Buqa H, Vix-Guterl C, Novak P (2010) Electrochim Acta 55:8928

    Article  CAS  Google Scholar 

  2. Zheng H, Jiang K, Abe T, Ogumi Z (2006) Carbon 44:203

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Chem Mater 22:587

    Article  CAS  Google Scholar 

  4. Ratnakumar BV, Smart MC, Surampudi S (2001) J Power Sources 97–98:137

    Article  Google Scholar 

  5. Novàk P, Joho F, Imhof R, Panitz J, Haas O (1999) J Power Sources 81–82:212

    Article  Google Scholar 

  6. Hee Park M, Sup Lee Y, Lee H, Han Y (2011) J Power Sources 196:5109

    Article  Google Scholar 

  7. Myung S-T, Natsui H, Sun Y-K, Yashiro H (2010) J Power Sources 195:8297

    Article  CAS  Google Scholar 

  8. Moumouzias G, Ritzoulis G, Siapkas D, Terzidis D (2003) J Power Sources 122:57

    Article  CAS  Google Scholar 

  9. Han H-B, Zhou S-S, Zhang D-J, Feng S-W, Li L-F, Liu K, Feng W-F, Nie J, Li H, Huang X-J, Armand M, Zhou Z-B (2011) J Power Sources 196:3623–3632

    Article  CAS  Google Scholar 

  10. Barlow CG (1999) Electrochem Solid State Lett 2:362

    Google Scholar 

  11. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim H-J (2004) Electrochim Acta 50:247

    Article  CAS  Google Scholar 

  12. An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Electrochim Acta 56:4841

    Article  CAS  Google Scholar 

  13. Profatilova IA, Kim S, Choi N (2009) Electrochim Acta 54:4445

    Article  CAS  Google Scholar 

  14. Smart MC, Ratnakumar BV, Surampudi S, Wang Y, Zhang X, Greenbaum SG, Hightower A, Ahn CC, Fultz B (1999) J Electrochem Soc 146:3963

    Article  CAS  Google Scholar 

  15. Abu-Lebdeh Y, Davidson I (2009) J. Electrochem Soc 156:A60

    Article  CAS  Google Scholar 

  16. Abu-Lebdeh Y, Davidson I (2009) J Power Sources 189:576

    Article  CAS  Google Scholar 

  17. Nagahama M, Hasegawa N, Okada S (2010) J. Electrochem Soc 157:748

    Article  Google Scholar 

  18. Yamada Y, Takazawa Y, Miyazaki K, Abe T (2010) J Phys Chem C 114:11680

    Article  CAS  Google Scholar 

  19. Ue M, Ido K, Mori SS (1994) J. Electrochem Soc 141:2989

    Article  CAS  Google Scholar 

  20. Ue M, Takeda M, Takehara M, Mori S (1997) J Electrochem Soc 144:2684

    Article  CAS  Google Scholar 

  21. Gmitter AJ, Plittz I, Amatucci GG (2012) J Electrochem Soc 159:A370

    Article  CAS  Google Scholar 

  22. Linden D, Reddy TB (2002) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  23. Schwarz M, Nelson E (1970) J Chem Eng Data 15:341

    Article  CAS  Google Scholar 

  24. Cossi M, Rega N, Scalmani G, Barone V (2003) V. J. Comput Chem 24:669

    Article  CAS  Google Scholar 

  25. Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M (2011) J Power Sources 196:9743

    Article  CAS  Google Scholar 

  26. Abe K, Hattori T, Matsumori Y (2004) US 2004/0013946 A1

  27. Nakamura H, Komatsu H, Yoshio M (1996) J Power Sources 62:219

    Article  CAS  Google Scholar 

  28. Laik B, Gessier F, Mercier F, Trocellier P, Chausse A, Messina R (1999) Electrochim Acta 44:1667

    Article  CAS  Google Scholar 

  29. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67

    Article  CAS  Google Scholar 

  30. Dahbi M, Violleau D, Ghamouss F, Jacquemin J, Van Tran F, Lemordant D, Anouti M (2012) Ind Eng Chem Res 51:5240

    Article  CAS  Google Scholar 

  31. Borodin O, Smith GD (2006) J Phys Chem B 110:4971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the French program ANR-Stock E (Hipascap Project, 2009) for the financial support and Pierre-Ivan Raynal for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Ghamouss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahbi, M., Ghamouss, F., Anouti, M. et al. Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte. J Appl Electrochem 43, 375–385 (2013). https://doi.org/10.1007/s10800-012-0522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0522-1

Keywords

Navigation