Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 2, pp 147–158 | Cite as

Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts

  • José J. Linares
  • Sabrina C. Zignani
  • Thairo A. Rocha
  • Ernesto R. Gonzalez
Original Paper

Abstract

A high temperature ethanol-fed polymer electrolyte membrane fuel cell has been implemented by using H3PO4-doped m-polybenzimidazole as polymeric electrolyte. Commercial Pt/C, PtRu/C and Pt3Sn/C catalysts are used in the anode. The performance was assessed in terms of polarization curves at different temperatures, feeding the cell with a high concentration ethanol solution (water/ethanol mass ratio of 2). The product distribution was measured with the support of a gas chromatograph. The use of bimetallic catalysts increased the current density. PtRu/C showed the best performance up to 175 °C, but it is outperformed by Pt3Sn/C at 200 °C. In terms of oxidation products, higher temperatures and current densities favour the oxidation of ethanol. However, Pt3Sn/C promoted the generation of more oxidized products compared to PtRu/C (in which most of the ethanol is oxidized to acetaldehyde), especially at high temperature. This accounts for the large current density. In terms of complete oxidation of ethanol to CO2, Pt/C was by far the most efficient catalyst for C–C scission, achieving percentages of 56 % of CO2, although operating above 175 °C dramatically boosted an undesirable methanation process that slashed the efficiency. The combination of fuel cell results and product distribution helped to suggest the different oxidation routes on the surface of the different catalysts.

Keywords

PEMFC Ethanol Oxidation products High temperature Polybenzimidazole Catalysts 

Notes

Acknowledgments

Authors want to thank to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support. In particular, Thairo A. Rocha thanks to the CNPq (Proc. 160459/2011-7) for a Master Degree scholarship, Sabrina C. Zignani thanks CNPq (Proc. 141545/2009-7) for a doctoral scholarship, and José J. Linares thanks FAPESP for a post-doctoral fellowship (Proc. 2010/07108-3).

References

  1. 1.
    Lamy C, Countanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, 1st edn. Wiley, Weinheim, p 22Google Scholar
  2. 2.
    Snyder K (2009) New catalyst paves the path for ethanol-powered fuel cells. Brookhaven National Laboratory News. http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=898. Accessed 25 July 2012
  3. 3.
    Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. A real-time mass spectrometry study. J Electrochem Soc 142:4218–4224CrossRefGoogle Scholar
  4. 4.
    Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRefGoogle Scholar
  5. 5.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362CrossRefGoogle Scholar
  6. 6.
    Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications fuel cells, electrolyzers, and energy conversion. J Electrochem Soc 159(7):F194–F202CrossRefGoogle Scholar
  7. 7.
    Qingfeng L, Hjuler HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications. J Appl Electrochem 31:773–779CrossRefGoogle Scholar
  8. 8.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9:597–604CrossRefGoogle Scholar
  9. 9.
    Zhou Q, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285CrossRefGoogle Scholar
  10. 10.
    Tsiakaras PE (2007) PtM/C (M = Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: structural characteristics and cell performance. J Power Sources 171:107–112CrossRefGoogle Scholar
  11. 11.
    Linares JJ, Rocha TA, Zignani S, Paganin VA, Gonzalez ER (2012) Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells. Int J Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.06.113
  12. 12.
    Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kountou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131:217–223CrossRefGoogle Scholar
  13. 13.
    Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energ 37:4597–46050CrossRefGoogle Scholar
  14. 14.
    Ribeiro J, Dos Anjos DM, Léger J-M, Hahn F, Olivi P, De Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662CrossRefGoogle Scholar
  15. 15.
    Song S, He C, Liu J, Wang Y, Brouzgou A, Tsiakaras P (2012) Two-step sequence for synthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediate products. Appl Catal B Environ 30:227–233CrossRefGoogle Scholar
  16. 16.
    Tripković AV, Lović JD, Popović KDJ (2010) Comparative study of ethanol oxidation at Pt-based nanoalloys and UPD-modified Pt nanoparticles. J Serb Chem Soc 75:1559–1574CrossRefGoogle Scholar
  17. 17.
    Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Comm 9:398–404CrossRefGoogle Scholar
  18. 18.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRefGoogle Scholar
  19. 19.
    Parreira LS, Rascio DC, Silva JCM, De Souza RFB, D’Villa-Silva M, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2012) A Pt3Sn/C electrocatalyst used as the cathode and anode in a single direct ethanol fuel cell. Int J Chem 4:38–48Google Scholar
  20. 20.
    Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118–5125CrossRefGoogle Scholar
  21. 21.
    Sun S, Chojak Halseid M, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190:2–13CrossRefGoogle Scholar
  22. 22.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl Catal B Environ 91:269–274CrossRefGoogle Scholar
  23. 23.
    Lobato J, Cañizares P, Ubeda D, Pinar FJ, Rodrigo MA (2011) Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl Catal B Environ 106:174–180Google Scholar
  24. 24.
    Parrondo J, Santhanam R, Mijangos F, Rambabu B (2010) Electrocatalytic performance of In2O3-supported Pt/C nanoparticles for ethanol electro-oxidation in direct ethanol fuel cells. Int J Electrochem Sci 5:1342–1354Google Scholar
  25. 25.
    Uda T, Boysen DA, Chisholm CRI, Haile SM (2006) Alcohol fuel cells at optimal temperatures batteries, fuel cells, and energy conversion. Electrochem Solid State Lett 9:A261–A264CrossRefGoogle Scholar
  26. 26.
    Otomo J, Nishida S, Takahashi H, Nagamoto H (2008) Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature. J Electroanal Chem 615:84–90CrossRefGoogle Scholar
  27. 27.
    Otomo J, Nishida S, Kato H, Nagamoto H, Oshima Y (2008) Direct alcohol electro-oxidation in an intermediate temperature fuel cell. ECS Trans 16:1275–1284CrossRefGoogle Scholar
  28. 28.
    Shimada I, Oshima Y, Otomo J (2011) Acceleration of ethanol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. J Electrochem Soc 158:B368–B375CrossRefGoogle Scholar
  29. 29.
    Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255–265CrossRefGoogle Scholar
  30. 30.
    Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T (2012) Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C. J Power Sources 199:103–109CrossRefGoogle Scholar
  31. 31.
    Wang Q, Sun GQ, Cao L, Jiang LH, Wang GX, Wang SL, Yang SH, Xin Q (2008) High performance direct ethanol fuel cell with double-layered anode catalyst layer. J Power Sources 177:142–147CrossRefGoogle Scholar
  32. 32.
    Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24CrossRefGoogle Scholar
  33. 33.
    Andreadis G, Stergiopoulos V, Song S, Tsiakaras P (2010) Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution. Appl Catal B Environ 100:157–164CrossRefGoogle Scholar
  34. 34.
    Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal Today 160:28–38CrossRefGoogle Scholar
  35. 35.
    Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54:1511–1518CrossRefGoogle Scholar
  36. 36.
    Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98–103CrossRefGoogle Scholar
  37. 37.
    Sun S, Heinen M, Jusys Z, Behm RJ (2012) Electrooxidation of acetaldehyde on a carbon supported Pt catalyst at elevated temperature/pressure: an on-line differential electrochemical mass spectrometry study. J Power Sources 204:1–13CrossRefGoogle Scholar
  38. 38.
    Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377–389CrossRefGoogle Scholar
  39. 39.
    Chiou JYZ, Siang J-Y, Yang S-Y, Ho K-F, Lee C-L (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.02.081 Google Scholar
  40. 40.
    Panagiotopoulou P, Verykios XE (2012) Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. Int J Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.02.087 Google Scholar
  41. 41.
    Lamy C, Lima X, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  42. 42.
    Zhao A, Ying W, Zhang H, Ma H, Fang D (2012) Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal Comm 17:34–38CrossRefGoogle Scholar
  43. 43.
    Galleti C, Specchia S, Saracco G, Specchia V (2010) CO-selective methanation over Ru–γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chem Eng Sci 65:590–596CrossRefGoogle Scholar
  44. 44.
    Bao CL, Tsong TT (1988) Methanation on Ir surfaces at low gas pressure and temperature: a study by pulsed-laser field desorption time-of-flight mass spectroscopy. Surf Sci 201:371–384CrossRefGoogle Scholar
  45. 45.
    Powell JB, Langer SH (1985) Low-temperature methanation and Fischer–Tropsch activity over supported ruthenium, nickel, and cobalt catalysts. J Catal 94:566–569CrossRefGoogle Scholar
  46. 46.
    Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. J Catal 278:181–188CrossRefGoogle Scholar
  47. 47.
    Bittins-Cattaneo B, Wilhelm S, Cattaneo E, Buschmann HW, Vielstich W (1988) Intermediates and products of ethanol oxidation on platinum in acid solution. Phys Chem Chem Phys 92:1210–1218Google Scholar
  48. 48.
    Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537CrossRefGoogle Scholar
  49. 49.
    Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108:19413–19424CrossRefGoogle Scholar
  50. 50.
    Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim Acta 53:2963–2971CrossRefGoogle Scholar
  51. 51.
    Colmati F, Gonzalez E (2007) Electronic effects in Pt-Sn alloy as anode in direct ethanol fuel cell. ECS Trans 11:1425–1435CrossRefGoogle Scholar
  52. 52.
    Xu Z-F, Wang Y (2011) Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: adsorption and dehydrogenation on Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd). J Phys Chem C 115:20565–20571CrossRefGoogle Scholar
  53. 53.
    Camargo APM, Previdello BAF, Varela H, Gonzalez ER (2010) Effect of temperature on the electro-oxidation of ethanol on platinum. Quim Nova 33:2143–2147CrossRefGoogle Scholar
  54. 54.
    Ghumman A, Vink C, Yepez O, Pickup PG (2008) Continuous monitoring of CO2 yields from electrochemical oxidation of ethanol: catalyst, current density and temperature effects. J Power Sources 177:71–76CrossRefGoogle Scholar
  55. 55.
    Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40:111–121CrossRefGoogle Scholar
  56. 56.
    Rao V, Cremers C, Stimming U, Cao L, Sun S, Yan S, Sun G, Xin Q (2007) Electro-oxidation of ethanol at gas diffusion electrodes A DEMS study. J Electrochem Soc 154:B1138–B1147CrossRefGoogle Scholar
  57. 57.
    Polychronopoulou K, Kalamaras CM, Efstathiou AM (2011) Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water-gas shift reactions. Recent Pat Mat Sci 4:1–24Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • José J. Linares
    • 1
    • 2
  • Sabrina C. Zignani
    • 1
  • Thairo A. Rocha
    • 1
  • Ernesto R. Gonzalez
    • 1
  1. 1.Instituto de Química de SãoCarlosUSPSão CarlosBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations