Skip to main content
Log in

Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A high temperature ethanol-fed polymer electrolyte membrane fuel cell has been implemented by using H3PO4-doped m-polybenzimidazole as polymeric electrolyte. Commercial Pt/C, PtRu/C and Pt3Sn/C catalysts are used in the anode. The performance was assessed in terms of polarization curves at different temperatures, feeding the cell with a high concentration ethanol solution (water/ethanol mass ratio of 2). The product distribution was measured with the support of a gas chromatograph. The use of bimetallic catalysts increased the current density. PtRu/C showed the best performance up to 175 °C, but it is outperformed by Pt3Sn/C at 200 °C. In terms of oxidation products, higher temperatures and current densities favour the oxidation of ethanol. However, Pt3Sn/C promoted the generation of more oxidized products compared to PtRu/C (in which most of the ethanol is oxidized to acetaldehyde), especially at high temperature. This accounts for the large current density. In terms of complete oxidation of ethanol to CO2, Pt/C was by far the most efficient catalyst for C–C scission, achieving percentages of 56 % of CO2, although operating above 175 °C dramatically boosted an undesirable methanation process that slashed the efficiency. The combination of fuel cell results and product distribution helped to suggest the different oxidation routes on the surface of the different catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lamy C, Countanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, 1st edn. Wiley, Weinheim, p 22

    Google Scholar 

  2. Snyder K (2009) New catalyst paves the path for ethanol-powered fuel cells. Brookhaven National Laboratory News. http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=898. Accessed 25 July 2012

  3. Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. A real-time mass spectrometry study. J Electrochem Soc 142:4218–4224

    Article  CAS  Google Scholar 

  4. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123

    Article  CAS  Google Scholar 

  5. Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362

    Article  CAS  Google Scholar 

  6. Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications fuel cells, electrolyzers, and energy conversion. J Electrochem Soc 159(7):F194–F202

    Article  CAS  Google Scholar 

  7. Qingfeng L, Hjuler HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications. J Appl Electrochem 31:773–779

    Article  Google Scholar 

  8. Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9:597–604

    Article  CAS  Google Scholar 

  9. Zhou Q, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285

    Article  CAS  Google Scholar 

  10. Tsiakaras PE (2007) PtM/C (M = Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: structural characteristics and cell performance. J Power Sources 171:107–112

    Article  CAS  Google Scholar 

  11. Linares JJ, Rocha TA, Zignani S, Paganin VA, Gonzalez ER (2012) Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.06.113

  12. Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kountou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131:217–223

    Article  CAS  Google Scholar 

  13. Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energ 37:4597–46050

    Article  CAS  Google Scholar 

  14. Ribeiro J, Dos Anjos DM, Léger J-M, Hahn F, Olivi P, De Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662

    Article  CAS  Google Scholar 

  15. Song S, He C, Liu J, Wang Y, Brouzgou A, Tsiakaras P (2012) Two-step sequence for synthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediate products. Appl Catal B Environ 30:227–233

    Article  CAS  Google Scholar 

  16. Tripković AV, Lović JD, Popović KDJ (2010) Comparative study of ethanol oxidation at Pt-based nanoalloys and UPD-modified Pt nanoparticles. J Serb Chem Soc 75:1559–1574

    Article  Google Scholar 

  17. Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Comm 9:398–404

    Article  CAS  Google Scholar 

  18. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  19. Parreira LS, Rascio DC, Silva JCM, De Souza RFB, D’Villa-Silva M, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2012) A Pt3Sn/C electrocatalyst used as the cathode and anode in a single direct ethanol fuel cell. Int J Chem 4:38–48

    CAS  Google Scholar 

  20. Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118–5125

    Article  Google Scholar 

  21. Sun S, Chojak Halseid M, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190:2–13

    Article  CAS  Google Scholar 

  22. Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl Catal B Environ 91:269–274

    Article  CAS  Google Scholar 

  23. Lobato J, Cañizares P, Ubeda D, Pinar FJ, Rodrigo MA (2011) Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl Catal B Environ 106:174–180

    CAS  Google Scholar 

  24. Parrondo J, Santhanam R, Mijangos F, Rambabu B (2010) Electrocatalytic performance of In2O3-supported Pt/C nanoparticles for ethanol electro-oxidation in direct ethanol fuel cells. Int J Electrochem Sci 5:1342–1354

    CAS  Google Scholar 

  25. Uda T, Boysen DA, Chisholm CRI, Haile SM (2006) Alcohol fuel cells at optimal temperatures batteries, fuel cells, and energy conversion. Electrochem Solid State Lett 9:A261–A264

    Article  CAS  Google Scholar 

  26. Otomo J, Nishida S, Takahashi H, Nagamoto H (2008) Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature. J Electroanal Chem 615:84–90

    Article  CAS  Google Scholar 

  27. Otomo J, Nishida S, Kato H, Nagamoto H, Oshima Y (2008) Direct alcohol electro-oxidation in an intermediate temperature fuel cell. ECS Trans 16:1275–1284

    Article  CAS  Google Scholar 

  28. Shimada I, Oshima Y, Otomo J (2011) Acceleration of ethanol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. J Electrochem Soc 158:B368–B375

    Article  Google Scholar 

  29. Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255–265

    Article  CAS  Google Scholar 

  30. Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T (2012) Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C. J Power Sources 199:103–109

    Article  CAS  Google Scholar 

  31. Wang Q, Sun GQ, Cao L, Jiang LH, Wang GX, Wang SL, Yang SH, Xin Q (2008) High performance direct ethanol fuel cell with double-layered anode catalyst layer. J Power Sources 177:142–147

    Article  CAS  Google Scholar 

  32. Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24

    Article  CAS  Google Scholar 

  33. Andreadis G, Stergiopoulos V, Song S, Tsiakaras P (2010) Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution. Appl Catal B Environ 100:157–164

    Article  CAS  Google Scholar 

  34. Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal Today 160:28–38

    Article  CAS  Google Scholar 

  35. Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54:1511–1518

    Article  CAS  Google Scholar 

  36. Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98–103

    Article  CAS  Google Scholar 

  37. Sun S, Heinen M, Jusys Z, Behm RJ (2012) Electrooxidation of acetaldehyde on a carbon supported Pt catalyst at elevated temperature/pressure: an on-line differential electrochemical mass spectrometry study. J Power Sources 204:1–13

    Article  CAS  Google Scholar 

  38. Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnO x /C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377–389

    Article  CAS  Google Scholar 

  39. Chiou JYZ, Siang J-Y, Yang S-Y, Ho K-F, Lee C-L (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.02.081

    Google Scholar 

  40. Panagiotopoulou P, Verykios XE (2012) Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.02.087

    Google Scholar 

  41. Lamy C, Lima X, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  42. Zhao A, Ying W, Zhang H, Ma H, Fang D (2012) Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal Comm 17:34–38

    Article  CAS  Google Scholar 

  43. Galleti C, Specchia S, Saracco G, Specchia V (2010) CO-selective methanation over Ru–γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chem Eng Sci 65:590–596

    Article  Google Scholar 

  44. Bao CL, Tsong TT (1988) Methanation on Ir surfaces at low gas pressure and temperature: a study by pulsed-laser field desorption time-of-flight mass spectroscopy. Surf Sci 201:371–384

    Article  CAS  Google Scholar 

  45. Powell JB, Langer SH (1985) Low-temperature methanation and Fischer–Tropsch activity over supported ruthenium, nickel, and cobalt catalysts. J Catal 94:566–569

    Article  CAS  Google Scholar 

  46. Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. J Catal 278:181–188

    Article  CAS  Google Scholar 

  47. Bittins-Cattaneo B, Wilhelm S, Cattaneo E, Buschmann HW, Vielstich W (1988) Intermediates and products of ethanol oxidation on platinum in acid solution. Phys Chem Chem Phys 92:1210–1218

    CAS  Google Scholar 

  48. Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  49. Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108:19413–19424

    Article  CAS  Google Scholar 

  50. Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim Acta 53:2963–2971

    Article  CAS  Google Scholar 

  51. Colmati F, Gonzalez E (2007) Electronic effects in Pt-Sn alloy as anode in direct ethanol fuel cell. ECS Trans 11:1425–1435

    Article  CAS  Google Scholar 

  52. Xu Z-F, Wang Y (2011) Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: adsorption and dehydrogenation on Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd). J Phys Chem C 115:20565–20571

    Article  CAS  Google Scholar 

  53. Camargo APM, Previdello BAF, Varela H, Gonzalez ER (2010) Effect of temperature on the electro-oxidation of ethanol on platinum. Quim Nova 33:2143–2147

    Article  CAS  Google Scholar 

  54. Ghumman A, Vink C, Yepez O, Pickup PG (2008) Continuous monitoring of CO2 yields from electrochemical oxidation of ethanol: catalyst, current density and temperature effects. J Power Sources 177:71–76

    Article  CAS  Google Scholar 

  55. Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40:111–121

    Article  CAS  Google Scholar 

  56. Rao V, Cremers C, Stimming U, Cao L, Sun S, Yan S, Sun G, Xin Q (2007) Electro-oxidation of ethanol at gas diffusion electrodes A DEMS study. J Electrochem Soc 154:B1138–B1147

    Article  CAS  Google Scholar 

  57. Polychronopoulou K, Kalamaras CM, Efstathiou AM (2011) Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water-gas shift reactions. Recent Pat Mat Sci 4:1–24

    Google Scholar 

Download references

Acknowledgments

Authors want to thank to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support. In particular, Thairo A. Rocha thanks to the CNPq (Proc. 160459/2011-7) for a Master Degree scholarship, Sabrina C. Zignani thanks CNPq (Proc. 141545/2009-7) for a doctoral scholarship, and José J. Linares thanks FAPESP for a post-doctoral fellowship (Proc. 2010/07108-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto R. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linares, J.J., Zignani, S.C., Rocha, T.A. et al. Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts. J Appl Electrochem 43, 147–158 (2013). https://doi.org/10.1007/s10800-012-0496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0496-z

Keywords

Navigation