Journal of Applied Electrochemistry

, Volume 42, Issue 10, pp 875–881 | Cite as

Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor

  • Jianli Chen
  • Xianliang Zheng
  • Fujun Miao
  • Jienan Zhang
  • Xiaoqiang Cui
  • Weitao Zheng
Original Paper


The graphene/carbon nanotube hybrid was designed and implemented by a deoxygenation process for direct electron transfer of glucose oxidase and glucose biosensor. The procedure was analyzed by transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectra, etc. The strategy of structurally engineering one-dimensional carbon nanotube (CNT) and two-dimensional graphene oxide (GO) presented three benefits: (a) a deoxygenation process between GO and acid-CNT was introduced under strongly alkaline condition; (b) GO prevented the irreversible integration of CNT; and (c) CNT hindered the restacking of GO. The RGO interacted with CNT through the van der Waals forces and π–π stacking interaction. The three-dimensional hybrid not only had a high surface area, but also exhibited a good electronic conductivity. A direct electrochemistry of glucose oxidase was obtained on the nanohybrid modified electrode which showed good response for glucose sensing. This study would provide a facile and green method for the preparation of nanohybrid for a wide range of applications including biosensing, super capacitor, and transparent electrode.


Graphene Carbon nanotube Glucose oxidase Three-dimensional hybrid Biosensor Direct electrochemistry 



This work was financially supported by the National Natural Science Foundation of China (Nos. 21075051, 21143008 and 50832001), Program for New Century Excellent Talents in University (NCET-10-0433), the “211” and “985” project of Jilin University, China, and State Key Laboratory of Electroanalytical Chemistry, CIAC, CAS.


  1. 1.
    Liu Q, Lu X, Li J, Yao X, Li J (2007) Biosens Bioelectron 22:3203. doi: 10.1016/j.bios.2007.02.013 CrossRefGoogle Scholar
  2. 2.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25:901. doi: 10.1016/j.bios.2009.09.004 CrossRefGoogle Scholar
  3. 3.
    Wang L, Wang E (2004) Electrochem Commun 6:49. doi: 10.1016/j.elecom.2003.10.004 CrossRefGoogle Scholar
  4. 4.
    Guo CX, Li CM (2010) Phys Chem Chem Phy 12:12153. doi: 10.1039/c0cp00378f Google Scholar
  5. 5.
    Krajewska B (2004) Enzyme Microb Technol 35:126. doi: 10.1016/j.enzmictec.2003.12.013 CrossRefGoogle Scholar
  6. 6.
    Liu Y, Wang M, Zhao F, Xu Z, Dong S (2005) Biosens Bioelectron 21:984. doi: 10.1016/j.bios.2005.03.003 CrossRefGoogle Scholar
  7. 7.
    Cai C (2004) Anal Biochem 332:75. doi: 10.1016/j.ab.2004.05.057 CrossRefGoogle Scholar
  8. 8.
    Wu P, Shao Q, Hu Y et al (2010) Electrochim Acta 55:8606. doi: 10.1016/j.electacta.2010.07.079 CrossRefGoogle Scholar
  9. 9.
    Pingarron J, Yanezsedeno P, Gonzalezcortes A (2008) Electrochim Acta 53:5848. doi: 10.1016/j.electacta.2008.03.005 CrossRefGoogle Scholar
  10. 10.
    Bao S-J, Li C-M, Zang J-F, Cui X-Q, Qiao Y, Guo J (2008) Adv Funct Mater 18:591. doi: 10.1002/adfm.200700728 CrossRefGoogle Scholar
  11. 11.
    Rivas G, Rubianes M, Rodriguez M (2007) Talanta 74:291. doi: 10.1016/j.talanta.2007.10.013 CrossRefGoogle Scholar
  12. 12.
    Gao Q, Guo Y, Zhang W, Qi H, Zhang C (2011) Sens Actuat B Chem 153:219. doi: 10.1016/j.snb.2010.10.034 CrossRefGoogle Scholar
  13. 13.
    Akhavan O, Ghaderi E, Rahighi R (2012) ACS Nano 6:2904. doi: 10.1021/nn300261t CrossRefGoogle Scholar
  14. 14.
    Gutés A, Carraro C, Maboudian R (2012) Biosens Bioelectron 33:56. doi: 10.1016/j.bios.2011.12.018 CrossRefGoogle Scholar
  15. 15.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954. doi: 10.1016/j.trac.2010.05.011 CrossRefGoogle Scholar
  16. 16.
    Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi: 10.1007/s10853-011-5260-y CrossRefGoogle Scholar
  17. 17.
    Yu D, Dai L (2010) J Phys Chem Lett 1:467. doi: 10.1021/jz9003137 CrossRefGoogle Scholar
  18. 18.
    Yang SY, Chang KH, Tien HW et al (2011) J Mater Chem 21:2374. doi: 10.1039/c0jm03199b CrossRefGoogle Scholar
  19. 19.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114. doi: 10.1002/anie.200903463 CrossRefGoogle Scholar
  20. 20.
    Lee CH, Yang CK, Lin MF, Chang CP, Su WS (2011) Phys Chem Chem Phy 13:3925. doi: 10.1039/c0cp01569e Google Scholar
  21. 21.
    Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y (2011) Carbon 49:457. doi: 10.1016/j.carbon.2010.09.042 CrossRefGoogle Scholar
  22. 22.
    Das S, Seelaboyina R, Verma V et al (2011) J Mater Chem 21:7289. doi: 10.1039/c1jm10316d CrossRefGoogle Scholar
  23. 23.
    Yu K, Lu G, Bo Z, Mao S, Chen J (2011) J Phys Chem Lett 2:1556. doi: 10.1021/jz200641c CrossRefGoogle Scholar
  24. 24.
    Hong T-K, Lee DW, Choi HJ, Shin HS, Kim B-S (2010) ACS Nano 4:8Google Scholar
  25. 25.
    Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) J Mater Sci 47:4400. doi: 10.1007/s10853-012-6294-5 CrossRefGoogle Scholar
  26. 26.
    Zhang C, Ren L, Wang X, Liu T (2010) J Phys Chem C 114:11435CrossRefGoogle Scholar
  27. 27.
    Fan X, Peng W, Li Y et al (2008) Adv Mater 20:4490. doi: 10.1002/adma.200801306 CrossRefGoogle Scholar
  28. 28.
    Yang D, Velamakanni A, Bozoklu G et al (2009) Carbon 47:145. doi: 10.1016/j.carbon.2008.09.045 CrossRefGoogle Scholar
  29. 29.
    Lee V, Whittaker L, Jaye C, Baroudi KM, Fischer DA, Banerjee S (2009) Chem Mater 21:3905. doi: 10.1021/cm901554p CrossRefGoogle Scholar
  30. 30.
    Alwarappan S, Liu C, Kumar A, Li C-Z (2010) J Phys Chem C 114:12920. doi: 10.1021/jp103273z CrossRefGoogle Scholar
  31. 31.
    Stankovich S, Dikin DA, Piner RD et al (2007) Carbon 45:1558. doi: 10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  32. 32.
    Eda G, Chhowalla M (2010) Adv Mater 22:2392. doi: 10.1002/adma.200903689 CrossRefGoogle Scholar
  33. 33.
    Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18:533. doi: 10.1002/elan.200503449 CrossRefGoogle Scholar
  34. 34.
    Unnikrishnan B, Palanisamy S, Chen SM (2012) Biosens Bioelectron. doi: 10.1016/j.bios.2012.06.045 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations