Skip to main content
Log in

Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The graphene/carbon nanotube hybrid was designed and implemented by a deoxygenation process for direct electron transfer of glucose oxidase and glucose biosensor. The procedure was analyzed by transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectra, etc. The strategy of structurally engineering one-dimensional carbon nanotube (CNT) and two-dimensional graphene oxide (GO) presented three benefits: (a) a deoxygenation process between GO and acid-CNT was introduced under strongly alkaline condition; (b) GO prevented the irreversible integration of CNT; and (c) CNT hindered the restacking of GO. The RGO interacted with CNT through the van der Waals forces and π–π stacking interaction. The three-dimensional hybrid not only had a high surface area, but also exhibited a good electronic conductivity. A direct electrochemistry of glucose oxidase was obtained on the nanohybrid modified electrode which showed good response for glucose sensing. This study would provide a facile and green method for the preparation of nanohybrid for a wide range of applications including biosensing, super capacitor, and transparent electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Q, Lu X, Li J, Yao X, Li J (2007) Biosens Bioelectron 22:3203. doi:10.1016/j.bios.2007.02.013

    Article  CAS  Google Scholar 

  2. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25:901. doi:10.1016/j.bios.2009.09.004

    Article  CAS  Google Scholar 

  3. Wang L, Wang E (2004) Electrochem Commun 6:49. doi:10.1016/j.elecom.2003.10.004

    Article  CAS  Google Scholar 

  4. Guo CX, Li CM (2010) Phys Chem Chem Phy 12:12153. doi:10.1039/c0cp00378f

    CAS  Google Scholar 

  5. Krajewska B (2004) Enzyme Microb Technol 35:126. doi:10.1016/j.enzmictec.2003.12.013

    Article  CAS  Google Scholar 

  6. Liu Y, Wang M, Zhao F, Xu Z, Dong S (2005) Biosens Bioelectron 21:984. doi:10.1016/j.bios.2005.03.003

    Article  CAS  Google Scholar 

  7. Cai C (2004) Anal Biochem 332:75. doi:10.1016/j.ab.2004.05.057

    Article  CAS  Google Scholar 

  8. Wu P, Shao Q, Hu Y et al (2010) Electrochim Acta 55:8606. doi:10.1016/j.electacta.2010.07.079

    Article  CAS  Google Scholar 

  9. Pingarron J, Yanezsedeno P, Gonzalezcortes A (2008) Electrochim Acta 53:5848. doi:10.1016/j.electacta.2008.03.005

    Article  CAS  Google Scholar 

  10. Bao S-J, Li C-M, Zang J-F, Cui X-Q, Qiao Y, Guo J (2008) Adv Funct Mater 18:591. doi:10.1002/adfm.200700728

    Article  CAS  Google Scholar 

  11. Rivas G, Rubianes M, Rodriguez M (2007) Talanta 74:291. doi:10.1016/j.talanta.2007.10.013

    Article  CAS  Google Scholar 

  12. Gao Q, Guo Y, Zhang W, Qi H, Zhang C (2011) Sens Actuat B Chem 153:219. doi:10.1016/j.snb.2010.10.034

    Article  Google Scholar 

  13. Akhavan O, Ghaderi E, Rahighi R (2012) ACS Nano 6:2904. doi:10.1021/nn300261t

    Article  CAS  Google Scholar 

  14. Gutés A, Carraro C, Maboudian R (2012) Biosens Bioelectron 33:56. doi:10.1016/j.bios.2011.12.018

    Article  Google Scholar 

  15. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954. doi:10.1016/j.trac.2010.05.011

    Article  CAS  Google Scholar 

  16. Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi:10.1007/s10853-011-5260-y

    Article  CAS  Google Scholar 

  17. Yu D, Dai L (2010) J Phys Chem Lett 1:467. doi:10.1021/jz9003137

    Article  CAS  Google Scholar 

  18. Yang SY, Chang KH, Tien HW et al (2011) J Mater Chem 21:2374. doi:10.1039/c0jm03199b

    Article  CAS  Google Scholar 

  19. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114. doi:10.1002/anie.200903463

    Article  CAS  Google Scholar 

  20. Lee CH, Yang CK, Lin MF, Chang CP, Su WS (2011) Phys Chem Chem Phy 13:3925. doi:10.1039/c0cp01569e

    CAS  Google Scholar 

  21. Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y (2011) Carbon 49:457. doi:10.1016/j.carbon.2010.09.042

    Article  CAS  Google Scholar 

  22. Das S, Seelaboyina R, Verma V et al (2011) J Mater Chem 21:7289. doi:10.1039/c1jm10316d

    Article  CAS  Google Scholar 

  23. Yu K, Lu G, Bo Z, Mao S, Chen J (2011) J Phys Chem Lett 2:1556. doi:10.1021/jz200641c

    Article  CAS  Google Scholar 

  24. Hong T-K, Lee DW, Choi HJ, Shin HS, Kim B-S (2010) ACS Nano 4:8

    Google Scholar 

  25. Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) J Mater Sci 47:4400. doi:10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

  26. Zhang C, Ren L, Wang X, Liu T (2010) J Phys Chem C 114:11435

    Article  CAS  Google Scholar 

  27. Fan X, Peng W, Li Y et al (2008) Adv Mater 20:4490. doi:10.1002/adma.200801306

    Article  CAS  Google Scholar 

  28. Yang D, Velamakanni A, Bozoklu G et al (2009) Carbon 47:145. doi:10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  29. Lee V, Whittaker L, Jaye C, Baroudi KM, Fischer DA, Banerjee S (2009) Chem Mater 21:3905. doi:10.1021/cm901554p

    Article  CAS  Google Scholar 

  30. Alwarappan S, Liu C, Kumar A, Li C-Z (2010) J Phys Chem C 114:12920. doi:10.1021/jp103273z

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Piner RD et al (2007) Carbon 45:1558. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  32. Eda G, Chhowalla M (2010) Adv Mater 22:2392. doi:10.1002/adma.200903689

    Article  CAS  Google Scholar 

  33. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18:533. doi:10.1002/elan.200503449

    Article  CAS  Google Scholar 

  34. Unnikrishnan B, Palanisamy S, Chen SM (2012) Biosens Bioelectron. doi:10.1016/j.bios.2012.06.045

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21075051, 21143008 and 50832001), Program for New Century Excellent Talents in University (NCET-10-0433), the “211” and “985” project of Jilin University, China, and State Key Laboratory of Electroanalytical Chemistry, CIAC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqiang Cui or Weitao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zheng, X., Miao, F. et al. Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor. J Appl Electrochem 42, 875–881 (2012). https://doi.org/10.1007/s10800-012-0461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0461-x

Keywords

Navigation