Advertisement

Journal of Applied Electrochemistry

, Volume 42, Issue 6, pp 391–398 | Cite as

Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells

  • Young-Chae Song
  • Tae-Seon Choi
  • Jung-Hui Woo
  • Kyuseon Yoo
  • Jae-Woo Chung
  • Chae-Young Lee
  • Boo Gil Kim
Original Paper

Abstract

This paper presents three different methods of hydrothermal (HT), microwave (MW), and cyclic voltammetry (CV) used to load a catalyst on a cathode surface. In the HT and MW methods, a multiwall carbon nanotube (MWCNT) is used as a support material to fix the catalyst, while Nafion solution is used as a binder to load the catalyst on the cathode surface. For the third option, the CV method is used to directly load the catalysts on the cathode surface without any support material. The performances of the three cathodes are tested in an air breathable batch microbial fuel cell (MFC) and compared to that of a commercial carbon cloth cathode with platinum (Pt). The maximum power density of the MFC with the HT cathode is measured as 833 mW m−2, which is higher than those of the CV and MW cathodes and slightly smaller than the MFC with the Pt cathode. The open circuit voltage of the MFC with the HT cathode is 610 mV, which is higher than those of MFCs with other cathodes, while the power density is higher than the MFCs of the MW and CV cathodes. In the case of the HT cathode, a conductive MWCNT network is well formed and entangled with the catalyst nanostructure of the cathode surface while the small ohmic and activation resistances of the HT cathode contribute to the good MFC performance.

Keywords

Microbial fuel cell Oxygen reduction Catalyst loading Hydrothermal 

Notes

Acknowledgements

This work is supported by the New and Renewable Energy program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (Grant No. 20093020090030).

References

  1. 1.
    Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Environ Sci Technol 40(17):5181–5192CrossRefGoogle Scholar
  2. 2.
    Song YC, Yoo KS, Lee SK (2010) J Power Sources 195:6478–6482CrossRefGoogle Scholar
  3. 3.
    Rabaey K, Verstraete W (2005) Trends Biotechnol 23(6):291–298CrossRefGoogle Scholar
  4. 4.
    Hamelers HVM, Heijne AT, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) Appl Microbiol Biotechnol 85:1673–1685CrossRefGoogle Scholar
  5. 5.
    Clauwaert P, Aelterman P, Pham TH, Schamphelaire LD, Carballa M, Rabaey K, Verstraete W (2008) Appl Microbiol Biotechnol 79:901–913CrossRefGoogle Scholar
  6. 6.
    Al-Saleh MH, Sundararaj U (2009) Carbon 47:2–22CrossRefGoogle Scholar
  7. 7.
    Carabineiro SAC, Pereira MFR, Pereira JN, Caparros C (2011) Nanoscale Res Lett 6(302):1–5Google Scholar
  8. 8.
    Yu EH, Cheng S, Scott K, Logan BE (2007) J Power Sources 171:275–281CrossRefGoogle Scholar
  9. 9.
    Du Z, Li H, Gu T (2007) Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  10. 10.
    Roche I, Katuri K, Scott K (2010) J Appl Electrochem 40:13–21CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Hu Y, Li S, Sun J, Hou B (2011) J Power Sources 196:9284–9289CrossRefGoogle Scholar
  12. 12.
    Kim BH, Chang IS, Gadd GM (2007) Appl Microbiol Biotechnol 76:485–494CrossRefGoogle Scholar
  13. 13.
    Yu EH, Cheng S, Logan BE, Scott K (2009) J Appl Electrochem 39:705–711CrossRefGoogle Scholar
  14. 14.
    Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) J Alloys Comp 499:259–264CrossRefGoogle Scholar
  15. 15.
    Liu XW, Sun XF, Huang YX, Sheng GP, Zhou K, Zeng RJ, Dong F, Wang SG, Xu AW, Tong ZH, Yu HQ (2010) Water Res 44:5298–5305CrossRefGoogle Scholar
  16. 16.
    Wang L, Liang P, Zhang J, Huang X (2011) Bioresour Technol 102:5093–5097CrossRefGoogle Scholar
  17. 17.
    Kim KH, Park HC, Lee SD, Hwa WJ, Hong SS, Lee GD, Park SS (2005) Mater Chem Phys 92:234–239CrossRefGoogle Scholar
  18. 18.
    Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W (2010) Electrochem Commun 12:338–341CrossRefGoogle Scholar
  19. 19.
    Zhang J, Tang Y, Song C, Zhang J, Wang H (2006) J Power Sources 163:532–537CrossRefGoogle Scholar
  20. 20.
    Jiang Y, Zhang J, Qin YH, Niu DF, Zhang XS, Niu L, Zhou XG, Lub TH, Yuan WK (2011) J Power Sources 196:9356–9360CrossRefGoogle Scholar
  21. 21.
    Duncan KL, Lee KT, Wachsman ED (2011) J Power Sources 196:2445–2451CrossRefGoogle Scholar
  22. 22.
    Haji S (2011) Renew Energy 36:451–458CrossRefGoogle Scholar
  23. 23.
    Subramanian V, Zhu H, Wei B (2008) Pure Appl Chem 80(11):2327–2343CrossRefGoogle Scholar
  24. 24.
    Zhao DD, Yang Z, Kong ESW, Xu CL, Zhang YF (2011) J Solid State Electrochem 15:1235–1242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Young-Chae Song
    • 1
  • Tae-Seon Choi
    • 1
  • Jung-Hui Woo
    • 1
  • Kyuseon Yoo
    • 2
  • Jae-Woo Chung
    • 3
  • Chae-Young Lee
    • 4
  • Boo Gil Kim
    • 5
  1. 1.Department of Environmental EngineeringKorea Maritime UniversityBusanKorea
  2. 2.Department of Civil and Environmental EngineeringJeonju UniversityJeonbukKorea
  3. 3.Department of Environmental EngineeringGyeongnam University of Science and TechnologyGyeongnam, JinjuKorea
  4. 4.Department of Civil EngineeringThe University of SuwonGyeonggi, HwaseongKorea
  5. 5.Division of Architecture and Civil EngineeringDongseo UniversityBusanKorea

Personalised recommendations