Skip to main content

Advertisement

Log in

Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents three different methods of hydrothermal (HT), microwave (MW), and cyclic voltammetry (CV) used to load a catalyst on a cathode surface. In the HT and MW methods, a multiwall carbon nanotube (MWCNT) is used as a support material to fix the catalyst, while Nafion solution is used as a binder to load the catalyst on the cathode surface. For the third option, the CV method is used to directly load the catalysts on the cathode surface without any support material. The performances of the three cathodes are tested in an air breathable batch microbial fuel cell (MFC) and compared to that of a commercial carbon cloth cathode with platinum (Pt). The maximum power density of the MFC with the HT cathode is measured as 833 mW m−2, which is higher than those of the CV and MW cathodes and slightly smaller than the MFC with the Pt cathode. The open circuit voltage of the MFC with the HT cathode is 610 mV, which is higher than those of MFCs with other cathodes, while the power density is higher than the MFCs of the MW and CV cathodes. In the case of the HT cathode, a conductive MWCNT network is well formed and entangled with the catalyst nanostructure of the cathode surface while the small ohmic and activation resistances of the HT cathode contribute to the good MFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  2. Song YC, Yoo KS, Lee SK (2010) J Power Sources 195:6478–6482

    Article  CAS  Google Scholar 

  3. Rabaey K, Verstraete W (2005) Trends Biotechnol 23(6):291–298

    Article  CAS  Google Scholar 

  4. Hamelers HVM, Heijne AT, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) Appl Microbiol Biotechnol 85:1673–1685

    Article  CAS  Google Scholar 

  5. Clauwaert P, Aelterman P, Pham TH, Schamphelaire LD, Carballa M, Rabaey K, Verstraete W (2008) Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  6. Al-Saleh MH, Sundararaj U (2009) Carbon 47:2–22

    Article  CAS  Google Scholar 

  7. Carabineiro SAC, Pereira MFR, Pereira JN, Caparros C (2011) Nanoscale Res Lett 6(302):1–5

    Google Scholar 

  8. Yu EH, Cheng S, Scott K, Logan BE (2007) J Power Sources 171:275–281

    Article  Google Scholar 

  9. Du Z, Li H, Gu T (2007) Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  10. Roche I, Katuri K, Scott K (2010) J Appl Electrochem 40:13–21

    Article  CAS  Google Scholar 

  11. Zhang Y, Hu Y, Li S, Sun J, Hou B (2011) J Power Sources 196:9284–9289

    Article  CAS  Google Scholar 

  12. Kim BH, Chang IS, Gadd GM (2007) Appl Microbiol Biotechnol 76:485–494

    Article  CAS  Google Scholar 

  13. Yu EH, Cheng S, Logan BE, Scott K (2009) J Appl Electrochem 39:705–711

    Article  CAS  Google Scholar 

  14. Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) J Alloys Comp 499:259–264

    Article  CAS  Google Scholar 

  15. Liu XW, Sun XF, Huang YX, Sheng GP, Zhou K, Zeng RJ, Dong F, Wang SG, Xu AW, Tong ZH, Yu HQ (2010) Water Res 44:5298–5305

    Article  CAS  Google Scholar 

  16. Wang L, Liang P, Zhang J, Huang X (2011) Bioresour Technol 102:5093–5097

    Article  CAS  Google Scholar 

  17. Kim KH, Park HC, Lee SD, Hwa WJ, Hong SS, Lee GD, Park SS (2005) Mater Chem Phys 92:234–239

    Article  CAS  Google Scholar 

  18. Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W (2010) Electrochem Commun 12:338–341

    Article  CAS  Google Scholar 

  19. Zhang J, Tang Y, Song C, Zhang J, Wang H (2006) J Power Sources 163:532–537

    Article  CAS  Google Scholar 

  20. Jiang Y, Zhang J, Qin YH, Niu DF, Zhang XS, Niu L, Zhou XG, Lub TH, Yuan WK (2011) J Power Sources 196:9356–9360

    Article  CAS  Google Scholar 

  21. Duncan KL, Lee KT, Wachsman ED (2011) J Power Sources 196:2445–2451

    Article  CAS  Google Scholar 

  22. Haji S (2011) Renew Energy 36:451–458

    Article  CAS  Google Scholar 

  23. Subramanian V, Zhu H, Wei B (2008) Pure Appl Chem 80(11):2327–2343

    Article  CAS  Google Scholar 

  24. Zhao DD, Yang Z, Kong ESW, Xu CL, Zhang YF (2011) J Solid State Electrochem 15:1235–1242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the New and Renewable Energy program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (Grant No. 20093020090030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chae Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, YC., Choi, TS., Woo, JH. et al. Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells. J Appl Electrochem 42, 391–398 (2012). https://doi.org/10.1007/s10800-012-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0410-8

Keywords

Navigation