Journal of Applied Electrochemistry

, Volume 42, Issue 4, pp 217–224 | Cite as

Inhibition effect of some aromatic amines on copper electrodeposition from acidic baths

  • Constantin Claudiu Văduva
  • Nicolae Vaszilcsin
  • Andrea Kellenberger
  • Mihai Medeleanu
Original Paper


To improve the quality requirements for copper deposits, the influence of some inhibition agents added to the acidic copper bath has been studied. Several aromatic nitrogen compounds have been tested as inhibition agents, such as aniline, N-methylaniline, N-ethylaniline, N,N-dimethylaniline (DMA), and N,N-diethylaniline (DEA). The electrochemical behavior of these organic additives and the most relevant aspects of the electrochemical behavior of copper in acid solutions have been analyzed by cyclic voltammetry. At the same time, a correlation between voltammetric data and molecular properties of protonated amines obtained by molecular modeling has been performed. The morphology of the copper deposits obtained in the absence and presence of organic compounds has been studied by scanning electron microscopy. An improvement of the roughness degree and crystallite size upon addition of aromatic amine has been found. Best results were obtained for DMA and DEA working at room temperature (25 ± 0.1 °C) and 200 A m−2 current density, in 1 mol L−1 sulfuric acid solution with 50 g L−1 Cu2+.


Acid copper bath Inhibition agents Aromatic amines Molecular modeling 



This study was partially supported by the strategic grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), co-financed by the European Social Fund–Investing in People, within the Sectoral Operational Programme Human Resources Development 2007–2013 and partially supported by the grant POSDRU 21/1.5/G/13798 inside POSDRU Romania 2007–2013 co-financed by the European Social Fund–Investing in People.


  1. 1.
    Quinet M, Lallemand F, Ricq L, Hihn J-Y, Delobelle P, Arnould C, Mekhalif Z (2009) Electrochim Acta 54:1529CrossRefGoogle Scholar
  2. 2.
    Gallaway JW, West AC (2008) J Electrochem Soc 155:632CrossRefGoogle Scholar
  3. 3.
    Pricer TJ, Kushner MJ, Alkire RC (2002) J Electrochem Soc 149:406CrossRefGoogle Scholar
  4. 4.
    Tantavichet N, Pritzker MD (2005) Electrochim Acta 50:1849CrossRefGoogle Scholar
  5. 5.
    Huerta Garrido ME, Pritzker MD (2008) J Electrochem Soc 155(4):332CrossRefGoogle Scholar
  6. 6.
    Wafula F, Liu Y, Yin L, Borgesen P, Cotts EJ, Dimitrov N (2011) J Appl Electrochem 41:469CrossRefGoogle Scholar
  7. 7.
    Kelly JJ, Tian C, West AC (1999) J Electrochem Soc 146(7):2540CrossRefGoogle Scholar
  8. 8.
    Pasquale MA, Gassa LM, Arvia AJ (2008) Electrochim Acta 53:5891CrossRefGoogle Scholar
  9. 9.
    Gu M, Zhong Q (2011) J Appl Electrochem 41:765CrossRefGoogle Scholar
  10. 10.
    Yoshida K, Masuda Y, Sakai Y, Shimomura T (2009) J Electrochem Soc 156(1):1CrossRefGoogle Scholar
  11. 11.
    Scendo M, Malyszko J (2000) J Electrochem Soc 147(5):1758CrossRefGoogle Scholar
  12. 12.
    Chassaing E (2001) J Electrochem Soc 148(10):690CrossRefGoogle Scholar
  13. 13.
    Kelly JJ, Bradley PE, Landolt D (2000) J Electrochem Soc 147(8):2975CrossRefGoogle Scholar
  14. 14.
    Portela AL, Teijelo ML, Lacconi JI (2006) Electrochim Acta 51:3261CrossRefGoogle Scholar
  15. 15.
    Sun M, Nelson AE, Adjaye J (2006) Catal Lett 109:133CrossRefGoogle Scholar
  16. 16.
    Vaduva CC, Vaszilcsin N, Kellenberger A (2011) J Corros Anticorros Prot VI(2):23Google Scholar
  17. 17.
    Vaduva CC, Vaszilcsin N, Kellenberger A, Pancan BI (2011) J Corros Anticorros Prot VI(3):19Google Scholar
  18. 18.
    Kiss L, Bosquez A, Varsany ML (1982) Acta Chim. Acad. Sci. Hungaricane 108:369Google Scholar
  19. 19.
    Rusin AI, Yur’ev BP, Potokova OV (1975) Sb. Rab. Khim. Istochssikam.Toka 10:57Google Scholar
  20. 20.
    Azuma K, Nakamura T, Kurachi M (1978) Nippon Kogyo Kaisi 94:347Google Scholar
  21. 21.
    Clerc C, Alkire R (1991) J Electrochem Soc 138:25CrossRefGoogle Scholar
  22. 22.
    Moreira AH, Benedetti AV, Cacot PL, Sumodjo PTA (1993) Electrochim Acta 38(7):981CrossRefGoogle Scholar
  23. 23.
    Ghodbane O, Roue L, Belanger D (2007) Electrochim Acta 52:5843CrossRefGoogle Scholar
  24. 24.
    Chu AKP, Sukava AJ (1969) J Electrochem Soc 116(9):1189Google Scholar
  25. 25.
    Shinde V, Mandale AB, Patil KR, Gaikwad AB, Patil PP (2006) Surf Coat Technol 200:5094CrossRefGoogle Scholar
  26. 26.
    Baitzer MM (1973) Organic Electrochemistry. Marcel Dekker Inc., New York, pp 72–74Google Scholar
  27. 27.
    Huang WS, Humphrey BH, MacDiarmid AG (1986) J Chem Soc Faraday Trans I 82:2385CrossRefGoogle Scholar
  28. 28.
    MacDiarmid AG, Epstein AJ (1989) Chem Soc Faraday Discuss 88:317CrossRefGoogle Scholar
  29. 29.
    Sasaki K, Kaya M, Yano J, Kitani A, Kunai A (1986) J Electroanal Chem 215:401CrossRefGoogle Scholar
  30. 30.
    Vivier V, Cachet-Vivier C, Regis A, Sagon G, Nedelec J-Y, Yu LT (2002) J Solid State Electrochem 6:522CrossRefGoogle Scholar
  31. 31.
    Watanabe A, Mori K, Iwabuchi A, Iwasaki Y, Nakamura Y, Ito O (1989) Macromolecules 22:3521CrossRefGoogle Scholar
  32. 32.
    Wei D, Kvarnström C, Lindfors T, Kronberg L, Sjöholm R, Ivaska A (2006) Synth Met 156:541CrossRefGoogle Scholar
  33. 33.
    Blomquist M, Lindfors T, Vähäsalo L, Pivrikas A, Ivaska A (2006) Synth Met 156:549CrossRefGoogle Scholar
  34. 34.
    Wei D, Lindfors T, Kvarnström C, Kronberg L, Sjöholm R, Ivaska A (2005) J Electroanal Chem 575:19CrossRefGoogle Scholar
  35. 35.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  36. 36.
    Ciubotariu D, Medeleanu M, Iorga I, Deretey E, Bologa C, Muresan S (1993) Chem Bull Polytech Univ Timişoara 38:83Google Scholar
  37. 37.
    Turner DR, Johnson GR (1962) J Electrochem Soc 109(9):768CrossRefGoogle Scholar
  38. 38.
    Quickenden TI, Joang X (1984) Electrochim Acta 29(6):693CrossRefGoogle Scholar
  39. 39.
    Bozzini B, D’Urzo L, Mele C (2007) Electrochim Acta 52:4767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Constantin Claudiu Văduva
    • 1
  • Nicolae Vaszilcsin
    • 1
  • Andrea Kellenberger
    • 1
  • Mihai Medeleanu
    • 1
  1. 1.Faculty of Industrial Chemistry and Environmental EngineeringUniversity “Politehnica” of TimisoaraTimisoaraRomania

Personalised recommendations