Journal of Applied Electrochemistry

, Volume 42, Issue 3, pp 153–162 | Cite as

Preparation, characterization, and application of alkaline leached Ni/Zn–Ni binary coatings for electro-oxidation of methanol in alkaline solution

  • Mir Ghasem Hosseini
  • Mehdi Abdolmaleki
  • Sajjad Ashrafpoor
Original Paper


The Ni–Zn binary coating was electrochemically deposited on a copper electrode. Then, it was etched in a concentrated alkaline solution (30 wt% NaOH) to obtain a porous electrocatalytic surface suitable for methanol electro-oxidation in alkaline solution. The surface compositions of coatings before and after alkaline leaching were determined by atomic absorption spectroscopy and energy dispersive X-ray analysis. The surface morphologies were investigated by scanning electron microscopy. It was found that the leached Ni–Zn coating has a porous structure. Electrocatalytic activity toward the methanol electro-oxidation was assessed by cyclic voltammetry and electrochemical impedance spectroscopy techniques. The activation of electrode related to the removal of existing corrosion products and formation of pores and cracks during alkaline leaching. Cyclic voltammetry studies confirmed that the alkaline leaching process improved the activity of Ni–Zn coating in comparison with smooth Ni deposit for the methanol electro-oxidation.


Leached Ni/Zn–Ni coating Electrochemical deposition Methanol electro-oxidation Electrochemical impedance spectroscopy 



The authors would like to acknowledge the financial support from the Office in Charge of Research of Iranian Nanotechnology Society and the financial support from the Office of Vice Chancellor in Charge of Research of University of Tabriz.


  1. 1.
    North DC (1992) Int J Hydrog Energy 17:509CrossRefGoogle Scholar
  2. 2.
    Selvam P (1991) Int J Hydrog Energy 16:35CrossRefGoogle Scholar
  3. 3.
    Barbir F, Veziroğlu TN, Plass HJ (1990) Int J Hydrog Energy 15:739CrossRefGoogle Scholar
  4. 4.
    Lutfi N, Veziroğlu TN (1991) Int J Hydrog Energy 16:169CrossRefGoogle Scholar
  5. 5.
    Bockris JO’M, Veziroğlu TN (1983) Int J Hydrog Energy 8:323CrossRefGoogle Scholar
  6. 6.
    Veziroğlu TN, Barbir F (1992) Int J Hydrog Energy 17:391CrossRefGoogle Scholar
  7. 7.
    Wasmus S, Kuver A (1999) J Electroanal Chem 461:14CrossRefGoogle Scholar
  8. 8.
    Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:111CrossRefGoogle Scholar
  9. 9.
    Oliva P, Leonardi J, Laurent JF, Delmas C, Buaconnier JJ, Figlarz M, Fievent F, de Guibert A (1982) J Power Sources 8:229CrossRefGoogle Scholar
  10. 10.
    Faure C, Delmas C, Fouassier M (1991) J Power Sources 35:279CrossRefGoogle Scholar
  11. 11.
    Faure C, Borthomieu Y, Delmas C, Fouassier M (1991) J Power Sources 36:113CrossRefGoogle Scholar
  12. 12.
    Freitas MBJG (2001) J Power Sources 93:163CrossRefGoogle Scholar
  13. 13.
    Kauler J, Schaefer HJ (1982) Tetrahedron 38:3299CrossRefGoogle Scholar
  14. 14.
    Jafrarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) J Appl Electrochem 36:913CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Xu Y, Wang X (2004) Mater Chem Phys 86:293CrossRefGoogle Scholar
  16. 16.
    Nozad Golikand A, Ghannadi Maragheh M, Irannejad L, Asgari M (2004) Russ J Electrochem 42:167CrossRefGoogle Scholar
  17. 17.
    Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) J Power Sources 134:160CrossRefGoogle Scholar
  18. 18.
    Nozad Golikand A, Shahrokhian S, Asgari M, Ghannadi Maragheh M, Irannejad L, Khanchi A (2005) J Power Sources 144:21CrossRefGoogle Scholar
  19. 19.
    Pournaghi-Azar MH, Nahalparvari H (2004) J Solid State Electrochem 8:550CrossRefGoogle Scholar
  20. 20.
    Liu S-J (2004) Electrochim Acta 49:3235CrossRefGoogle Scholar
  21. 21.
    Nozad Golikand A, Asgari M, Ghannadi Maragheh M, Shahrokhian S (2006) J Electroanal Chem 588:155CrossRefGoogle Scholar
  22. 22.
    Wen TC, Lin SM, Tsai JM (1994) J Appl Electrochem 24:233Google Scholar
  23. 23.
    Lamy C, Belgsir EM, Leger J-M (2001) J Appl Electrochem 31:799CrossRefGoogle Scholar
  24. 24.
    Hosseini MG, Momeni MM, Faraji M (2010) Electroanalysis 22:2620CrossRefGoogle Scholar
  25. 25.
    Solmaza R, Döner A, Şahin İ, Yüce AO, Kardaş G, Yazıcı B, Erbil M (2009) Int J Hydrog Energy 34:7910CrossRefGoogle Scholar
  26. 26.
    Vértes G, Horányi G (1974) J Electroanal Chem 52:47CrossRefGoogle Scholar
  27. 27.
    Robertson PM (1980) J Electroanal Chem 111:97CrossRefGoogle Scholar
  28. 28.
    Singh RN, Singh A, Anindita A, Mishra D (2008) Int J Hydrogen Energy 33:6878CrossRefGoogle Scholar
  29. 29.
    Yi Q, Huang W, Zhang J, Liu X, Li L (2008) Catal Commun 9:2053CrossRefGoogle Scholar
  30. 30.
    Gobal F, Valadbeigi Y, Kasmaee LM (2011) J Electroanal Chem 650:219CrossRefGoogle Scholar
  31. 31.
    Birry L, Lasia A (2004) J Appl Electrochem 34:735CrossRefGoogle Scholar
  32. 32.
    Kubisztal J, Budniok A, Lasia A (2007) Int J Hydrog Energy 32:1211CrossRefGoogle Scholar
  33. 33.
    Chen L, Lasia A (1992) J Electrochem Soc 139:3214CrossRefGoogle Scholar
  34. 34.
    Trasatti S, Petrii OA (1991) Pure Appl Chem 63:711CrossRefGoogle Scholar
  35. 35.
    Hitz A, Lasia A (2001) J Electroanal Chem 500:213CrossRefGoogle Scholar
  36. 36.
    Lasia A (1995) J Electroanal Chem 397:27CrossRefGoogle Scholar
  37. 37.
    Lasia A (1997) J Electroanal Chem 428:155CrossRefGoogle Scholar
  38. 38.
    Lasia A (2000) J Electroanal Chem 500:30Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mir Ghasem Hosseini
    • 1
  • Mehdi Abdolmaleki
    • 1
  • Sajjad Ashrafpoor
    • 1
  1. 1.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUniversity of TabrizTabrizIran

Personalised recommendations