Journal of Applied Electrochemistry

, Volume 42, Issue 3, pp 131–137 | Cite as

Electroanalysis of urinary l-dopa using tyrosinase immobilized on gold nanoelectrode ensembles

  • Ana Pinho
  • Subramanian Viswanathan
  • Susana Ribeiro
  • Maria Beatriz Prior Pinto Oliveira
  • Cristina Delerue-Matos
Original Paper


The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.


Gold nanoelectrode Tyrosinase l-dopa Electrochemical biosensor 


  1. 1.
    Stoica L, Lindgren-Sjolander A, Ruzgas T, Gorton L (2004) Anal Chem 76:4690CrossRefGoogle Scholar
  2. 2.
    Erdogan H, Tuncagil S, Toppare L (2010) J Macromol Sci A 47:209CrossRefGoogle Scholar
  3. 3.
    Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Chem Rev 108:2554CrossRefGoogle Scholar
  4. 4.
    Venton BJ, Wightman RM (2003) Anal Chem 75:414ACrossRefGoogle Scholar
  5. 5.
    Lee JM, Xu G-R, Kim BK, Choi HN, Lee W-Y (2011) Electroanalysis 23:962CrossRefGoogle Scholar
  6. 6.
    Piao Y, Jin Z, Lee D, Lee HJ, Na HB, Hyeon T, Oh MK, Kim J, Kim HS (2011) Biosens Bioelectron 26:3192CrossRefGoogle Scholar
  7. 7.
    Song W, Li D-W, Li Y-T, Li Y, Long Y-T (2011) Biosens Bioelectron 26:3181CrossRefGoogle Scholar
  8. 8.
    Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) Anal Chim Acta 665:146CrossRefGoogle Scholar
  9. 9.
    Campuzano S, Serra B, Pedrero M, de Villena FJM, Pingarron JM (2003) Anal Chim Acta 494:187CrossRefGoogle Scholar
  10. 10.
    Wang L, Ran Q, Tian Y, Ye S, Xu J, Xian Y, Peng R, Jin L (2010) Microchim Acta 171:217CrossRefGoogle Scholar
  11. 11.
    Kalachar HCB, Basavanna S, Viswanatha R, Naik YA, Raj DA, Sudhad PN (2011) Electroanalysis 23:1107CrossRefGoogle Scholar
  12. 12.
    Sima VH, Patris S, Aydogmus Z, Sarakbi A, Sandulescu R, Kauffmann JM (2011) Talanta 83:980CrossRefGoogle Scholar
  13. 13.
    Notsu H, Tatsuma T (2004) J Electroanal Chem 566:379CrossRefGoogle Scholar
  14. 14.
    Xue HG, Shen ZQ (2002) Talanta 57:289CrossRefGoogle Scholar
  15. 15.
    Zejli H, Hidalgo–Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Anal Chim Acta 612:198CrossRefGoogle Scholar
  16. 16.
    Marin-Zamora ME, Rojas-Melgarejo F, Garcia-Canovas F, Garcia-Ruiz PA (2005) J Chem Technol Biotechnol 80:1356CrossRefGoogle Scholar
  17. 17.
    Tembe S, Karve M, Inamdar S, Haram S, Melo J, D’Souza SF (2006) Anal Biochem 349:72CrossRefGoogle Scholar
  18. 18.
    Sheldon RA (2007) Adv Synth Catal 349:1289CrossRefGoogle Scholar
  19. 19.
    Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Electrochim Acta 53:5848CrossRefGoogle Scholar
  20. 20.
    Liu SQ, Ju HX (2003) Biosens Bioelectron 19:177CrossRefGoogle Scholar
  21. 21.
    Liu SQ, Yu JH, Ju HX (2003) J Electroanal Chem 540:61CrossRefGoogle Scholar
  22. 22.
    Manso J, Mena ML, Yanez-Sedeno P, Pingarron J (2007) J Electroanal Chem 603:1CrossRefGoogle Scholar
  23. 23.
    Viswanathan S, Liao W-C, Huang C-C, Hsu W-L, Ho JA (2007) Talanta 74:229CrossRefGoogle Scholar
  24. 24.
    Krishnamoorthy K, Zoski CG (2005) Anal Chem 77:5068CrossRefGoogle Scholar
  25. 25.
    Shi HB, Xia T, Nel AE, Yeh JI (2007) Nanomedicine 2:599CrossRefGoogle Scholar
  26. 26.
    Shi HB, Yeh JI (2007) Nanomedicine 2:587CrossRefGoogle Scholar
  27. 27.
    Prabhu P, Suresh Babu R, Sriman Narayanan S (2011) Sens Actuators B 156:606Google Scholar
  28. 28.
    Hu GZ, Chen L, Guo Y, Wang XL, Shao SJ (2010) Electrochim Acta 55:4711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ana Pinho
    • 1
    • 2
  • Subramanian Viswanathan
    • 1
  • Susana Ribeiro
    • 1
  • Maria Beatriz Prior Pinto Oliveira
    • 2
  • Cristina Delerue-Matos
    • 1
  1. 1.Requimte, Instituto Superior de Engenharia do PortoPortoPortugal
  2. 2.Requimte, Faculdade de FarmáciaUniversidade do PortoPortoPortugal

Personalised recommendations