Skip to main content
Log in

Electroanalysis of urinary l-dopa using tyrosinase immobilized on gold nanoelectrode ensembles

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stoica L, Lindgren-Sjolander A, Ruzgas T, Gorton L (2004) Anal Chem 76:4690

    Article  CAS  Google Scholar 

  2. Erdogan H, Tuncagil S, Toppare L (2010) J Macromol Sci A 47:209

    Article  CAS  Google Scholar 

  3. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Chem Rev 108:2554

    Article  CAS  Google Scholar 

  4. Venton BJ, Wightman RM (2003) Anal Chem 75:414A

    Article  CAS  Google Scholar 

  5. Lee JM, Xu G-R, Kim BK, Choi HN, Lee W-Y (2011) Electroanalysis 23:962

    Article  CAS  Google Scholar 

  6. Piao Y, Jin Z, Lee D, Lee HJ, Na HB, Hyeon T, Oh MK, Kim J, Kim HS (2011) Biosens Bioelectron 26:3192

    Article  CAS  Google Scholar 

  7. Song W, Li D-W, Li Y-T, Li Y, Long Y-T (2011) Biosens Bioelectron 26:3181

    Article  CAS  Google Scholar 

  8. Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) Anal Chim Acta 665:146

    Article  CAS  Google Scholar 

  9. Campuzano S, Serra B, Pedrero M, de Villena FJM, Pingarron JM (2003) Anal Chim Acta 494:187

    Article  CAS  Google Scholar 

  10. Wang L, Ran Q, Tian Y, Ye S, Xu J, Xian Y, Peng R, Jin L (2010) Microchim Acta 171:217

    Article  CAS  Google Scholar 

  11. Kalachar HCB, Basavanna S, Viswanatha R, Naik YA, Raj DA, Sudhad PN (2011) Electroanalysis 23:1107

    Article  CAS  Google Scholar 

  12. Sima VH, Patris S, Aydogmus Z, Sarakbi A, Sandulescu R, Kauffmann JM (2011) Talanta 83:980

    Article  CAS  Google Scholar 

  13. Notsu H, Tatsuma T (2004) J Electroanal Chem 566:379

    Article  CAS  Google Scholar 

  14. Xue HG, Shen ZQ (2002) Talanta 57:289

    Article  CAS  Google Scholar 

  15. Zejli H, Hidalgo–Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Anal Chim Acta 612:198

    Article  CAS  Google Scholar 

  16. Marin-Zamora ME, Rojas-Melgarejo F, Garcia-Canovas F, Garcia-Ruiz PA (2005) J Chem Technol Biotechnol 80:1356

    Article  CAS  Google Scholar 

  17. Tembe S, Karve M, Inamdar S, Haram S, Melo J, D’Souza SF (2006) Anal Biochem 349:72

    Article  CAS  Google Scholar 

  18. Sheldon RA (2007) Adv Synth Catal 349:1289

    Article  CAS  Google Scholar 

  19. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Electrochim Acta 53:5848

    Article  CAS  Google Scholar 

  20. Liu SQ, Ju HX (2003) Biosens Bioelectron 19:177

    Article  CAS  Google Scholar 

  21. Liu SQ, Yu JH, Ju HX (2003) J Electroanal Chem 540:61

    Article  CAS  Google Scholar 

  22. Manso J, Mena ML, Yanez-Sedeno P, Pingarron J (2007) J Electroanal Chem 603:1

    Article  CAS  Google Scholar 

  23. Viswanathan S, Liao W-C, Huang C-C, Hsu W-L, Ho JA (2007) Talanta 74:229

    Article  CAS  Google Scholar 

  24. Krishnamoorthy K, Zoski CG (2005) Anal Chem 77:5068

    Article  CAS  Google Scholar 

  25. Shi HB, Xia T, Nel AE, Yeh JI (2007) Nanomedicine 2:599

    Article  CAS  Google Scholar 

  26. Shi HB, Yeh JI (2007) Nanomedicine 2:587

    Article  CAS  Google Scholar 

  27. Prabhu P, Suresh Babu R, Sriman Narayanan S (2011) Sens Actuators B 156:606

    Google Scholar 

  28. Hu GZ, Chen L, Guo Y, Wang XL, Shao SJ (2010) Electrochim Acta 55:4711

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Viswanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinho, A., Viswanathan, S., Ribeiro, S. et al. Electroanalysis of urinary l-dopa using tyrosinase immobilized on gold nanoelectrode ensembles. J Appl Electrochem 42, 131–137 (2012). https://doi.org/10.1007/s10800-012-0379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0379-3

Keywords

Navigation