Journal of Applied Electrochemistry

, Volume 42, Issue 2, pp 121–129 | Cite as

TiO2/WO3 hybrid structures produced through a sacrificial polymer layer technique for pollutant photo- and photoelectrooxidation under ultraviolet and visible light illumination

  • Maria Ilieva
  • Aneliya Nakova
  • Vessela Tsakova
Original Paper


TiO2/WO3 hybrid structures were produced on graphite substrates following a three step procedure: (i) electrochemical deposition of WO3 under potentiostatic conditions, (ii) electrochemical deposition of TiO2–polyaniline (PANI) composite layers by potentiostatic polymerization of aniline in the presence of TiO2 nanoparticles, (iii) high temperature (450 °C) treatment for decomposition of the PANI structure. Experiments on the photoelectrochemical response of the composite layers were carried out by cyclic voltammetry and chronoamperommetry in the dark and under illumination by using low power lamps emitting in the visible and UV spectrum ranges. The oxidation of three pollutants—oxalate ions, methanol and malachite green was used to evaluate the photoelectrocatalytic activity of the TiO2/WO3 structures. The photocurrents registered for the photooxidation of oxalate were higher than photocurrents measured at hybrid TiO2/WO3 electrodes obtained in conventional two-step electrodeposition of WO3 and subsequently TiO2 from corresponding salt solutions. The efficiency of the malachite green photodegradation in our experiments was also about two orders of magnitude higher than that obtained in TiO2/WO3 structures synthesized in a conventional way. These results are (very probably) due to the proposed synthetic approach involving PANI polymer layer as an immobilizing matrix and the opportunity to disperse homogeneously TiO2 nanoparticles on the WO3 surface provided.


Titanium dioxide Tungsten trioxide Photoelectrocatalysis Methanol Oxalate ions Malachite green 



The authors are thankful to Prof. N. Vuchkov for the measurements of the UV and VIS lamps spectra. The investigations are carried out within the working program of the project NATO SfP 982835.


  1. 1.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735CrossRefGoogle Scholar
  2. 2.
    Chatterjee D, Dasgupta S (2005) J Photochem Photobiol C Photochem Rev 6:186CrossRefGoogle Scholar
  3. 3.
    Gaya UI, Abdullah AH (2008) J Photochem Photobiol C Photochem Rev 9:1CrossRefGoogle Scholar
  4. 4.
    Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Catal Today 147:1CrossRefGoogle Scholar
  5. 5.
    Shuyanovskaya I, Hepel M (1998) J Electrochem Soc 145:3981CrossRefGoogle Scholar
  6. 6.
    Shuyanovskaya I, Hepel M (1999) J Electrochem Soc 146:243CrossRefGoogle Scholar
  7. 7.
    Song H, Jiang H, Liu X, Meng G (2006) J Photochem Photobiol A Chem 181:421CrossRefGoogle Scholar
  8. 8.
    Higashimoto S, Sakiyama M, Azuma M (2006) Thin Solid Films 503:201CrossRefGoogle Scholar
  9. 9.
    Higashimoto S, Ushiroda Y, Azuma M (2008) Top Catal 47:148CrossRefGoogle Scholar
  10. 10.
    Saepurahman MA, Abdullah FK, Chong J (2010) Hazardous Mater 176:451CrossRefGoogle Scholar
  11. 11.
    Takahashi T, Nakabayashi H, Yamada N, Tanabe J (2003) J Vac Sci Technol A 21:1409CrossRefGoogle Scholar
  12. 12.
    Biswas S, Hossain MF, Shahjahan M, Takahashi K, Takahashi T (2009) J Vac Sci Technol A 27:880CrossRefGoogle Scholar
  13. 13.
    Shinguu H, Bhuiyan MMH, Ikegami T, Ebihara K (2006) Thin Solid Films 506–507:111CrossRefGoogle Scholar
  14. 14.
    Chentamarakshan CR, de Tacconi NR, Shiratsuchi R, Rajeshwar Kr (2003) J Electroanal Chem 533:77Google Scholar
  15. 15.
    de Tacconi NR, Chentamarakshan CR, Rajeshwar Kr, Pauporte Th, Lincot D (2003) Electrochem Commun 5:220CrossRefGoogle Scholar
  16. 16.
    Somasundaram S, Chentamarakshan CR, de Tacconi NR, Basit NA, Rajeshwar Kr (2006) Electrochem Commun 8:539CrossRefGoogle Scholar
  17. 17.
    Somasundaram S, Tacconi N, Chentamarakshan CR, Rajeshwar Kr, de Tacconi NR (2005) J Electroanal Chem 577:167CrossRefGoogle Scholar
  18. 18.
    Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S (2005) J Electroanal Chem 585:35CrossRefGoogle Scholar
  19. 19.
    Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S (2007) Electrochem Commun 9:365CrossRefGoogle Scholar
  20. 20.
    Georgieva J, Armyanov S, Valova E, Phillipides N, Poulios I, Sotiropoulos S (2008) J Adv Oxid Technol 11:300Google Scholar
  21. 21.
    Georgieva J, Armyanov S, Poulios I, Sotiropoulos S (2009) Electrochem Commun 11:1643CrossRefGoogle Scholar
  22. 22.
    Valova E, Georgieva J, Armyanov S, Sotiropoulos S, Hubin A, Baert K, Raes M (2010) ECS Trans 25:13CrossRefGoogle Scholar
  23. 23.
    Georgieva J, Sotiropoulos S, Armyanov S, Phillipides N, Poulios I (2011) J Appl Electrochem 41:173CrossRefGoogle Scholar
  24. 24.
    Ilieva M, Ivanov S, Tsakova V (2008) J Appl Electrochem 38:63CrossRefGoogle Scholar
  25. 25.
    Addamo M, Augugliaro V, Garcia-Lopez E, Loddo V, Marci G, Palmisano L (2005) Catal Today 107–108:612CrossRefGoogle Scholar
  26. 26.
    Waldner G, Gomez R, Neumann-Spallart M (2007) Electrochim Acta 52:2634CrossRefGoogle Scholar
  27. 27.
    Jiang D, Zhao H, Jia Z, Cao J, John R (2001) J Photochem Photobiol A Chem 144:197CrossRefGoogle Scholar
  28. 28.
    Bojinova AS, Papazova CI, Karadjova IB, Poulios I (2008) Euras J Anal Chem 3:34Google Scholar
  29. 29.
    Jiang D, Zhao H, Zhang S, John R (2006) J Photochem Photobiol A 177:253CrossRefGoogle Scholar
  30. 30.
    Villarreal TL, Gomes R, Neumann- Spallart M, Alonsi-Vante N, Salvador P (2004) J Phys Chem B 208:15172CrossRefGoogle Scholar
  31. 31.
    Ju YM, Yang SG, Ding YC, Sun C, Zhang AQ, Wang LH (2008) J Phys Chem A 112:11276CrossRefGoogle Scholar
  32. 32.
    Li MC, Shen JN (2006) J Solid State Electrochem 10:980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Physical ChemistrySofiaBulgaria

Personalised recommendations