Journal of Applied Electrochemistry

, Volume 42, Issue 2, pp 81–87 | Cite as

Electrocatalytic oxidation of formaldehyde on nickel modified ionic liquid carbon paste electrode as a simple and efficient electrode

  • Reza Ojani
  • Jahan-Bakhsh Raoof
  • Saeid Safshekan
Original Paper


Ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was used to fabricate a new ionic liquid/carbon paste electrode (IL/CPE). The general behavior of this electrode was characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy. Results showed that the IL plays an important role in improving the conductivity, reversibility, and electron transfer rate of the electrode. Nickel-modified ionic liquid/carbon paste electrode (Ni/IL/CPE) was also constructed by immersion of the IL/CPE in 1.0 M nickel sulfate solution. IL showed significant effect on the accumulation of nickel species on the surface of the electrode. The Ni/IL/CPE was applied successfully to highly efficient (current density of 16.5 mA cm−2) electrocatalytic oxidation of formaldehyde in alkaline medium. Cyclic voltammetry and chronoamperometry techniques indicated that this electrode displays a considerable electrocatalytic activity toward the oxidation of formaldehyde. The effects of different scan rates and formaldehyde concentrations on the electrocatalytic activity of this modified electrode were investigated. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.


Ionic liquid Formaldehyde Cyclic voltammetry Carbon paste electrode Electrocatalytic oxidation 


  1. 1.
    Anderson JL, Armstrong DW, Wei GT (2006) Anal Chem 2892:78Google Scholar
  2. 2.
    Buzzeo MC, Evans RG, Compton RG (2004) Chem Phys Chem 1106:5Google Scholar
  3. 3.
    Welton T (1999) Chem Rev 2071:99Google Scholar
  4. 4.
    Maciej G, Andrzej L, Izabela S (2006) Electrochim Acta 5567:51Google Scholar
  5. 5.
    Rika H, Yasuhiko I (2000) J Fluorine Chem 221:105Google Scholar
  6. 6.
    Nishi N, Imakura S, Kakiuchi T (2006) Anal Chem 2726:78Google Scholar
  7. 7.
    Sun W, Li Y, Duan Y, Jiao K (2009) Electrochim Acta 4105:54Google Scholar
  8. 8.
    Lang CM, Kim K, Guerra L, Kohl PA (2005) J Phys Chem B 19454:109Google Scholar
  9. 9.
    Brooks CA, Doherty AP (2004) Electrochem Commun 867:6Google Scholar
  10. 10.
    Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 3820:78Google Scholar
  11. 11.
    Liu HT, He P, Li ZY, Sun CY, Shi LH, Liu Y, Zhu GY, Li JH (2005) Electrochem Commun 1357:7Google Scholar
  12. 12.
    Zanoni MVB, Rogers EI, Hardacre C, Compton RG (2010) Anal Chim Acta 115:659Google Scholar
  13. 13.
    Safavi A, Maleki N, Farjami F, Farjami E (2009) J Electroanal Chem 75:626Google Scholar
  14. 14.
    Iwasita T (2002) Electrochim Acta 3663:47Google Scholar
  15. 15.
    Park S, Xie Y, Weaver MJ (2002) Langmuir 5792:18Google Scholar
  16. 16.
    Gao GY, Guo DJ, Li HL (2006) J Power Sources 1094:162Google Scholar
  17. 17.
    Nagashree KL, Raviraj NH, Ahmed MF (2010) Electrochim Acta 2629:55Google Scholar
  18. 18.
    Kim J, Jung C, Rhee CK, Lim TH (2007) Langmuir 10831:23Google Scholar
  19. 19.
    Jiang Ch, Chen H, Yu Ch, Zhang S, Liu B, Kong J (2009) Electrochim Acta 1134:54Google Scholar
  20. 20.
    Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS (2004) Electrochim Acta 3909:49Google Scholar
  21. 21.
    Nakabayashi S, Sugiyama N, Yagi I, Uosaki K (1996) Chem Phys 269:205Google Scholar
  22. 22.
    Peng J, Wang S (2007) Appl Catal B: Environ 282:73Google Scholar
  23. 23.
    Ciszewski A, Milczarek G (1999) J Electroanal Chem 18:469Google Scholar
  24. 24.
    Lima RB, Massafera MP, Batista EA, Iwasita T (2007) J Electroanal Chem 142:603Google Scholar
  25. 25.
    Song C, Khanfar M, Pickup PG (2006) J Appl Electrochem 339:36Google Scholar
  26. 26.
    Sun W, Sun G, Qin B, Xin Q (2007) Sens Actuators B Chem 193:128Google Scholar
  27. 27.
    Strbac S, Avramov Ivic M (2009) Electrochim Acta 5408:54Google Scholar
  28. 28.
    Ojani R, Raoof JB, Hosseini SR (2009) J Solid State Electrochem 1605:13Google Scholar
  29. 29.
    Raoof JB, Ojani R, Monfared F (2009) J Electroanal Chem 153:633Google Scholar
  30. 30.
    Katz E, Willner I (2003) Electroanalysis 913:15Google Scholar
  31. 31.
    Ojani R, Raoof JB, Hosseini SR (2008) Electrochim Acta 2402:53Google Scholar
  32. 32.
    Hahn F, Beden B, Croissant MG, Lamy C (1986) Electrochim Acta 335:3Google Scholar
  33. 33.
    Desilvestro J, Corrigan DA, Weaver MJ (1988) J Electrochem Soc 885:4Google Scholar
  34. 34.
    Shafei AA (1999) J Electroanal Chem 89:2Google Scholar
  35. 35.
    Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) J Hydrogen Energy 4367:33Google Scholar
  36. 36.
    Kunugi Y, Ono Y, Nonaka T (1992) J Electroanal Chem 325:333CrossRefGoogle Scholar
  37. 37.
    Koper MTM, Hachkar M, Beden B (1996) J Chem Soc Faraday Trans 3975:92Google Scholar
  38. 38.
    Pariente F, Lorenzo E, Tobalina F, Abruna HD (1995) Anal Chem 3936:67Google Scholar
  39. 39.
    Selvaraj V, Grace AN, Alagar M (2009) J Colloid Interface Sci 254:333Google Scholar
  40. 40.
    Habibi B, Delnavaz N (2010) J Hydrogen Energy 8831:35Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Reza Ojani
    • 1
  • Jahan-Bakhsh Raoof
    • 1
  • Saeid Safshekan
    • 1
  1. 1.Electroanalytical Chemistry Research Laboratory, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations