Journal of Applied Electrochemistry

, Volume 41, Issue 12, pp 1389–1396 | Cite as

Electrochemical detection and removal of lead in water using poly(propylene imine) modified re-compressed exfoliated graphite electrodes

  • Thabile Ndlovu
  • Omotayo A. Arotiba
  • Srinivasan Sampath
  • Rui W. Krause
  • Bhekie B. Mamba
Original Paper


Modification of exfoliated graphite (EG) electrode with generation 2 poly(propylene imine) dendrimer by electrodeposition resulted in an electrochemical sensor which was used to detect lead ions in water to a limit of 1 ppb and a linear response between 2.5 and 40 ppb using square wave anodic stripping voltammetry (SW-ASV). Pb(II) was also removed from spiked water sample using a 40-mm diameter unmodified EG electrode with an applied potential of −1,000 mV for 180 min. A removal efficiency of 99% was calculated from a 150 mL sample. The results obtained in both cases using SW-ASV, correlated with atomic absorption spectroscopy.


Exfoliated graphite Lead Poly(propylene imine) dendrimer Square wave anodic stripping voltammetry Water 



The authors would like to thank the University of Johannesburg, Nanotechnology Innovation Centre, National Research Foundation and Council for Scientific and Industrial Research for funding this project. The support of the Indian Institute of Science is gratefully acknowledged.


  1. 1.
    Elsherief AE (2003) Electrochim Acta 48:2667CrossRefGoogle Scholar
  2. 2.
    El-Sherif IY, Ashmawy A, Badr S (2008) J Appl Sci 4:391Google Scholar
  3. 3.
    Wong ELS, Chow E, Gooding JJ (2007) Electrochem Commun 9:845CrossRefGoogle Scholar
  4. 4.
    Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Desalination 232:145CrossRefGoogle Scholar
  5. 5.
    Bonnissel M, Luo L, Tondeur D (2001) Carbon 39:2151CrossRefGoogle Scholar
  6. 6.
    Fletcher AM, Gelberg KH, Marshall EG (1999) J Community Health 24:215CrossRefGoogle Scholar
  7. 7.
    Sun D, Sun Z (2008) J Appl Electrochem 38:1223CrossRefGoogle Scholar
  8. 8.
    Simonsson D (1997) Chem Soc Rev 26:181CrossRefGoogle Scholar
  9. 9.
    Gasparotto LHS, Bocchi N, Rocha-Filho RC, Biaggio SR (2006) J Appl Electrochem 36:677CrossRefGoogle Scholar
  10. 10.
    Chen MH, Chou TC (2003) J Electrochem Soc 150:H214CrossRefGoogle Scholar
  11. 11.
    Kaisheva A, Iliev I, Christov S, Kazareva R (1997) Sens Actuators B Chem 44:571CrossRefGoogle Scholar
  12. 12.
    Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochem Commun 11:1365CrossRefGoogle Scholar
  13. 13.
    Juttner K, Galla U, Schmieder H (2000) Electrochim Acta 45:2575CrossRefGoogle Scholar
  14. 14.
    Zaki MM, Nirdosh I, Sedahmed GH (2007) Chem Eng J 126:67CrossRefGoogle Scholar
  15. 15.
    Ramesham R (1999) J Mater Sci 34:1439CrossRefGoogle Scholar
  16. 16.
    Chung DDL (2002) J Mater Sci 37:1475CrossRefGoogle Scholar
  17. 17.
    Cai D, Song M (2007) J Mater Chem 17:3678CrossRefGoogle Scholar
  18. 18.
    Chung DDL (1987) J Mater Sci 22:4190CrossRefGoogle Scholar
  19. 19.
    Hristea G, Budrugeac P (2008) J Therm Anal Calorim 91:817CrossRefGoogle Scholar
  20. 20.
    Chung DDL (2000) J Mater Eng Perform 9:161CrossRefGoogle Scholar
  21. 21.
    Economou A, Voulgaropoulos A (2007) Talanta 71:758CrossRefGoogle Scholar
  22. 22.
    Ayranci E, Conway BE (2001) J Appl Electrochem 31:257CrossRefGoogle Scholar
  23. 23.
    Cao X, Yang G, Wei S, Li C (2008) J Appl Electrochem 38:1571CrossRefGoogle Scholar
  24. 24.
    Arotiba OA, Owino JH, Baker PG, Iwuoha EI (2010) J Electroanal Chem 638:287CrossRefGoogle Scholar
  25. 25.
    Arotiba OA, Songa EA, Baker PG, Iwuoha EI (2009) Chem Today 27:55Google Scholar
  26. 26.
    Arotiba OA, Baker PG, Mamba BB, Iwuoha EI (2011) Int J Electrochem Sci 6:673Google Scholar
  27. 27.
    Krasteva N, Guse B, Besnard I, Yasuda A, Vossmeyer T (2003) Sens Actuators B Chem 92:137CrossRefGoogle Scholar
  28. 28.
    Arotiba OA (2008) Electrochemical impedance modelling of the reactivities of dendrimeric poly(propylene imine) DNA nanobiosensors. PhD Thesis, Department of Chemistry, University of the Western CapeGoogle Scholar
  29. 29.
    Truzzi C, Annibaldi A, Illuminati S, Bassotti E, Scarponi G (2008) Anal Bioanal Chem 392:247CrossRefGoogle Scholar
  30. 30.
    Laschi S, Palchetti I, Mascini M (2006) Sens Actuators B Chem 114:460CrossRefGoogle Scholar
  31. 31.
    Zou Z, Jang A, Macknight E, Wu P, Do J, Bishop P, Ahn C (2008) Sens Actuators B Chem 134:18CrossRefGoogle Scholar
  32. 32.
    Švancara I, Baldrianová L, Tesařová E, Hočevar SB, Elsuccary SAA, Economou A, Sotiropoulos S, Ogorevc B, Vytřas K (2006) Electroanalysis 18:177CrossRefGoogle Scholar
  33. 33.
    Hwang G, Han W, Park J, Kang S (2008) Sens Actuators B Chem 135:309CrossRefGoogle Scholar
  34. 34.
    Jung W, Jang A, Bishop PL, Ahn CH (2011) Sens Actuators B Chem 155:145CrossRefGoogle Scholar
  35. 35.
    SANS 241 (2005) Drinking water quality management guide for water services authorities, 6th edn. Accessed 25 Mar 2011
  36. 36.
    World Health Organisation (WHO) guidelines for drinking-water quality, 3rd edn incorporating the 1st and 2nd addenda, vol 1. Geneva (2008). Accessed 25 Mar 2011
  37. 37.
    South Australia (SA) Water Trade Waste Branch Standards of Acceptance of Liquid Waste to Sewer: as required by the sewage Act 1929 2009. Accessed 11 Jun 2011

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thabile Ndlovu
    • 1
  • Omotayo A. Arotiba
    • 1
  • Srinivasan Sampath
    • 2
  • Rui W. Krause
    • 1
  • Bhekie B. Mamba
    • 1
  1. 1.Department of Chemical TechnologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations