Adsorptive stripping voltammetric determination of podophyllotoxin, an antitumour herbal drug, at multi-walled carbon nanotube paste electrode

  • Riyaz Ahmad Dar
  • Pradeep Kumar Brahman
  • Sweety Tiwari
  • Krishna Sadashiv Pitre
Original Paper


Adsorption stripping voltammetry, a very sensitive electroanalytical method, was employed to determine podophyllotoxin, a kind of antitumour herbal drug at a multi-wall carbon nanotube (MWCNT)-modified carbon paste electrode (CPE) surface. In the following anodic sweep from 0.5 to 1.5 V, podophyllotoxin, adsorbed at the MWCNT-modified CPE surface, was oxidized and yielded a sensitive oxidation peak with E 1/2/E p approximately 1.16 V/1.18 V over the scan rates of 10–120 mV s−1. From CV and SWV studies of podophyllotoxin in the acetate buffers of various pH values, it was found that protons were involved in the oxidation of the drug at the H+/e ratio of one (∆E p/pH = 56 mV at 25 °C). Its electrochemical behaviour was irreversible. The experimental conditions, such as supporting electrolyte, pH value, accumulation time, ionic strength and scan rate, were optimized for the measurement of podophyllotoxin. The best results were obtained in 0.02 M acetate/acetic acid buffer (pH 4.6) containing 0.04 M KCl (1:49, v/v) for 60 s accumulation. The oxidation peak current varies linearly with the concentration of podophyllotoxin over the range of 199–1796 pg mL−1. The limits of detection and quantification of the pure drug are 4.5 and 14.96 pg mL−1, with the correlation coefficient, r = 0.998 and the relative standard deviation, RSD = 1.3% (n = 5). This new method was successfully applied to the determination of podophyllotoxin in a plant sample of the rhizome of Podophyllum hexandrum. Recoveries were 99.173–101.231%. The relative standard deviations of intraday and interday analyses for podophyllotoxin were 0.55 and 0.61%, respectively (n = 3).


Adsorptive stripping voltammetry Cyclic voltammetry Square wave voltammetry Podophylotoxin Irreversible wave Determination in plant sample 



The authors thank the Head, department of chemistry, Dr. Hari Singh Gour University Sagar (M.P) India, for providing necessary laboratory facilities and the University Grants Commission New Delhi for financial support under its special assistance programme.


  1. 1.
    Gordaliza M, Castro MA, Miguel del Corral JM et al (2000) Curr Pharm Des 6:1811–1839CrossRefGoogle Scholar
  2. 2.
    Ayres DC, Loike JD (1990) Lignans. Chemical, biological and clinical properties. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Sultan P, Shawl AS, Abdellah AA et al (2010) Curr Res J Biol Sci 2(5):345–351Google Scholar
  4. 4.
    Sharma TR, Singh BM, Sharma NR et al (2000) J Plant Biochem Biotechnol 18:422–426Google Scholar
  5. 5.
    Mishra N, Acharya R, Gupta AP et al (2005) Curr Sci 88(9):1371–1373Google Scholar
  6. 6.
    Lin MC, Lin JH, Chen SK et al (2008) J Food Drug Anal 16(6):29–40Google Scholar
  7. 7.
    Wang J (1988) In: Bard AJ (ed) Electroanalytical chemistry. Dekker, New York, p 132Google Scholar
  8. 8.
    Jain R, Gupta VK, Jadon N et al (2010) J Electroanal Chem 648:20CrossRefGoogle Scholar
  9. 9.
    Jain R, Vikas (2011) Colloids Surf B 82:333–339CrossRefGoogle Scholar
  10. 10.
    Luo X, Killard AJ, Morrin A et al (2006) Anal Chim Acta 575:39–44CrossRefGoogle Scholar
  11. 11.
    Luo H, Shi Z, Li N et al (2001) Anal Chem 739:15–920Google Scholar
  12. 12.
    Wang J, Li M, Shi Z et al (2002) Electroanalysis 14:225–230CrossRefGoogle Scholar
  13. 13.
    Wang ZH, Liu J, Liang QL et al (2002) Analyst 127:653–658CrossRefGoogle Scholar
  14. 14.
    Anthony WS, Jonathan LH, William CA (1956) Contribution from the national cancer inst. and the national inst. of arthritis and metabolic diseases. Internal report, National Institute of Health, Public Health Services, U.S. Department of Health, Education and Welfare, pp 288–291Google Scholar
  15. 15.
    Gosser DK (ed) (1994) Cyclic voltammetry. VCH, New YorkGoogle Scholar
  16. 16.
    Li QL, Chen SA (1993) Anal Chim Acta 282:145CrossRefGoogle Scholar
  17. 17.
    Murali SR, Kumara Swamy BK, Sherigara BS et al (2002) Bull Electrochem 18:385Google Scholar
  18. 18.
    Eswarappa B, Sherigara BS, Kumara Swaky BK (2004) Bull Electrochem 20:1Google Scholar
  19. 19.
    Sherigara BS, Kumara Swamy BE, Ishwar Bhat K et al (2001) Int J Chem Kinet 33:449CrossRefGoogle Scholar
  20. 20.
    Brown ER, Large RF (1964) In: Weissberger A, Rossiter BW (eds) Physical methods of chemistry. Wiley Interscience, Rochester, p 423Google Scholar
  21. 21.
    Goyal RN, Bachhet N, Tyagi A, Pandey AK (2000) Anal Chim Acta 605:34–40Google Scholar
  22. 22.
    Shankara KS, Katrahalli U, Seetharamappa J (2009) E J Electroanal Chem 636:93–100CrossRefGoogle Scholar
  23. 23.
    Filipiak M (2001) J Anal Sci 17:1667–1670Google Scholar
  24. 24.
    Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New YorkGoogle Scholar
  25. 25.
    Laviron EJ (1974) Electroanal Chem 52:355CrossRefGoogle Scholar
  26. 26.
    Qian Rong LI, Zhang TH, Robert SW (2001) Chin Chem Lett 12(12):1057–1060Google Scholar
  27. 27.
    Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn. Ellis Horwood-Prentice Hall, Chichester, p 115Google Scholar
  28. 28.
    Swartz ME, Krull IS (1997) Analytical method development and validation. Marcel Dekker, New York, p 62Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Riyaz Ahmad Dar
    • 1
  • Pradeep Kumar Brahman
    • 1
  • Sweety Tiwari
    • 1
  • Krishna Sadashiv Pitre
    • 1
  1. 1.Chemical Technology Laboratory, Department of ChemistryDr. Hari Singh Gour UniversitySagarIndia

Personalised recommendations