Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low-temperature aluminium electrolysis

  • V. A. Kovrov
  • A. P. Khramov
  • Yu. P. Zaikov
  • V. N. Nekrasov
  • M. V. Ananyev
Original Paper


The rate of oxygen evolution on metallic inert anodes was measured as a function of current density during electrolysis of a low-melting NaF(12)–KF–AlF3 bath ([NaF + KF]/[AlF3] = 1.5 mol mol−1) at 800 °C. The oxidation rate of the anode substrate (A cm−2) was calculated. The anode oxidation process was depressed at the potentials of oxygen evolution. The dynamics of the decrease in the oxidation rate, which were obtained in previous study by the change in geometrical size of the metallic part of the specimen, was reproduced both by the technique proposed and also in potentiostatic electrolysis at potentials below that of oxygen evolution, in some cases, depending on prepolarisation.


Molten salts Aluminium electrolysis Low-temperature electrolyte Inert anode Oxidation rate Passivation 



This study was financially supported by the Program of the Ural Division of the Russian Academy of Sciences. The authors thank V. M. Chumarev for providing the alloys.


  1. 1.
    Kovrov VA, Khramov AP, Redkin AA, Zaikov YP (2008) Oxygen evolving anodes for aluminum electrolysis. In: Electrodes for Industrial Electrochemistry—214th ECS Meeting, Honolulu, HI, United States, 12–17 October 2008Google Scholar
  2. 2.
    Kovrov VA, Khramov AP, Shurov NI, Zaikov Yu P (2010) Russ J Electrochem (Engl Transl) 46(6):665–670Google Scholar
  3. 3.
    Beck TR, MacRae CM, Wilson NC (2011) Metal anode performance in low-temperature electrolytes for aluminum production. Metall Mater Trans B. doi: 10.1007/s11663-011-9511-8
  4. 4.
    Sekhar JA, Liu J, Deng H et al (1998) Graded non-consumable anode materials. In: Welch B (ed) Light metals. TMS, Warrendale, pp 597–603Google Scholar
  5. 5.
    Shi Z, Xu J, Qiu Z et al (2003) JOM J Min Met Mater 55:63–65Google Scholar
  6. 6.
    Shi Z, Zhao X, Xu J et al (2008) Anti-oxidation properties of iron-nickel alloys at 800–900 °C. In: DeYoung DH (ed) Light metals. TMS, Warrendale, pp 1051–1054Google Scholar
  7. 7.
    Helle S, Davis B, Guay D, Roue L (2010) J Electrochem Soc 157:E173–E179CrossRefGoogle Scholar
  8. 8.
    Chapman V et al (2011) High temperature oxidation behaviour of Ni–Fe–Co anodes for aluminium electrolysis. Corros Sci. doi: 10.1016/j.corsci.2011.05.018
  9. 9.
    Filatov AY, Antipov EV, Borzenko MI et al (2008) Protect Metals (Engl Transl) 44(6):627–631CrossRefGoogle Scholar
  10. 10.
    Cassayre L, Chamelot P, Arurault L, Massot L, Palau P, Taxil P (2007) Corros Sci 49:3610–3625CrossRefGoogle Scholar
  11. 11.
    Yang J, Hryn JN, Krumdick GK (2006) In: Galloway TJ (ed) Light Metals. TMS, Warrendale, pp 421–424Google Scholar
  12. 12.
    Apisarov A, Dedyukhin A, Nikolaeva E, Tinghaev P, Tkacheva O, Redkin A, Zaikov Y (2011) Metall Mater Trans B 42:236–242Google Scholar
  13. 13.
    Apisarov AP, Dedyukhin AE, Red’kin AA, Tkacheva OY, Zaikov YP (2010) Russ J Electrochem (Engl Transl) 46(6):633–639Google Scholar
  14. 14.
    Zajkov JP, Suzdal’tsev AV, Khramov AP, Kovrov VA (2007) Pat. RU2368707C2Google Scholar
  15. 15.
    Wagman DD, Evans WH, Parker VB et al (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11(Suppl 2):399Google Scholar
  16. 16.
    Glushko VP (ed) (1978–1982) Thermodynamic properties of individual substances, vol 1–4. Science Press, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • V. A. Kovrov
    • 1
  • A. P. Khramov
    • 1
  • Yu. P. Zaikov
    • 1
  • V. N. Nekrasov
    • 1
  • M. V. Ananyev
    • 1
  1. 1.Institute of High Temperature ElectrochemistryEkaterinburgRussia

Personalised recommendations