The effect of electrochemical lithiation on physicochemical properties of RF-sputtered Sn thin films

  • C. S. Nimisha
  • G. Venkatesh
  • N. Munichandraiah
  • G. Mohan Rao
Original Paper


Thin films of Sn were deposited on Pt/Si substrates by sputtering technique and subjected to electrochemical lithiation studies. Electrochemical lithiation of Sn resulted in the formation of Sn–Li alloys of different compositions. Charging of Sn-coated Pt/Si electrodes was terminated at different potentials and the electrodes were examined for physicochemical properties. The scanning electron microscopy and atomic force microscopy images suggested that the Sn films expanded on lithiation. Roughness of the film increased with an increase in the quantity of Li present in Sn–Li alloy. Electrochemical impedance data suggested that the kinetics of charging became sluggish with an increase in the quantity of Li in Sn–Li alloy.


Tin films RF sputtering Electrochemical lithiation Surface roughness 



This work was funded by Defense Research Development Organization (DRDO), Government of India.


  1. 1.
    Bates JB, Gruzalski GR, Dudney NJ et al (1994) Solid State Ionics 70/71:619CrossRefGoogle Scholar
  2. 2.
    Ji HJ, Kang SH, Lee HJ et al (2009) Proc IMechE Part G J Aerospace Engineering 223:107CrossRefGoogle Scholar
  3. 3.
    Liu WY, Fu ZW, Qin QZ (2007) Thin Solid Films 515:4045CrossRefGoogle Scholar
  4. 4.
    Jeon EJ, Shin YW, Nam SC et al (2001) J Electrochem Soc 148:A318CrossRefGoogle Scholar
  5. 5.
    Navone C, Hadjean RB, Pereira Ramos JP et al (2009) J Electrochem Soc 156:A763CrossRefGoogle Scholar
  6. 6.
    Winter M, Besenhard JO (1999) Electrochim Acta 45:31CrossRefGoogle Scholar
  7. 7.
    Du Z, Zhang S, Jiang T et al (2010) Electrochim Acta 55:3537CrossRefGoogle Scholar
  8. 8.
    Courtney IA, Dahn JR (1997) J Electrochem Soc 144:2943CrossRefGoogle Scholar
  9. 9.
    Hamon Y, Brousse T, Jousse F et al (2001) J Power Sources 9798:185CrossRefGoogle Scholar
  10. 10.
    Tamura N, Ohshita R, Fujimoto M et al (2002) J Power Sources 107:48CrossRefGoogle Scholar
  11. 11.
    Lee SJ, Lee HY, Jeong SH et al (2002) J Power Sources 111:345CrossRefGoogle Scholar
  12. 12.
    Chiu KF, Lin HC, Lin KM et al (2006) J Electrochem Soc 153:A920CrossRefGoogle Scholar
  13. 13.
    Courtney IA, Dahn JR (1997) J Electrochem Soc 144:2045CrossRefGoogle Scholar
  14. 14.
    Wen CJ, Huggins RA (1981) J Electrochem Soc 128:1181CrossRefGoogle Scholar
  15. 15.
    Wen CJ, Huggins RA (1980) J Solid State Chem 35:376CrossRefGoogle Scholar
  16. 16.
    Thackeray MM, Vaughey JT, Johnson CS et al (2003) J Power Sources 113:124CrossRefGoogle Scholar
  17. 17.
    Timmons A, Dahn JR (2006) J Electrochem Soc 153:A1206CrossRefGoogle Scholar
  18. 18.
    Naille S, Dedryvere R, Martinez H et al (2007) J Power Sources 174:1086CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. S. Nimisha
    • 1
  • G. Venkatesh
    • 2
  • N. Munichandraiah
    • 2
  • G. Mohan Rao
    • 1
  1. 1.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations