Advertisement

Polarization curve analysis of all-vanadium redox flow batteries

  • Doug Aaron
  • Zhijiang Tang
  • Alexander B. Papandrew
  • Thomas A. Zawodzinski
Original Paper

Abstract

We outline the analysis of performance of redox flow batteries (RFBs) using polarization curves. This method allows the researcher immediate access to sources of performance losses in flow batteries operating at steady state. We provide guidance on ‘best practices’ for use of this tool, illustrated using examples from single cells operating as vanadium redox batteries.

Keywords

Flow battery Polarization curve Vanadium redox battery VRB RFB 

Notes

Acknowledgments

We gratefully acknowledge the Governor’s Chair Fund from the State of Tennessee for support of this research. TZ also acknowledges the support of the Materials Science and Technology Division of the Physical Sciences Directorate at Oak Ridge National Lab for support of this work through coverage of his time. DA and ZT acknowledge SEERC and the Dept. of Chemical and Biomolecular Engineering for their partial support of this work.

References

  1. 1.
    Rychick M, Skyllas-Kazacos M (1988) J Power Sources 22:59–67CrossRefGoogle Scholar
  2. 2.
    Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) J Power Sources 35:399–404CrossRefGoogle Scholar
  3. 3.
    Dell R (2001) J Power Sources 100:2–17CrossRefGoogle Scholar
  4. 4.
    Joerissen L, Garche J, Fabjan C, Tomazic G (2004) J Power Sources 127:98–104CrossRefGoogle Scholar
  5. 5.
    Ponce de Leon C, Frias-Ferrer A, Gonzalez-Garcia J, Szanto D, Walsh FC (2006) J Power Sources 160:716–732CrossRefGoogle Scholar
  6. 6.
    Fabjan C, Garche J, Harrer B, Jorissen L, Kolbeck C, Philippi F, Tomazic G, Wagner F (2001) Electrochim Acta 47:825–831CrossRefGoogle Scholar
  7. 7.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:1253–1260CrossRefGoogle Scholar
  8. 8.
    Fang B, Wei Y, Arai T, Iwasa S, Kumagai M (2003) J Appl Electrochem 33:197–203CrossRefGoogle Scholar
  9. 9.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:2459–2465CrossRefGoogle Scholar
  10. 10.
    Arico V, Creti AS, Antonucci P, Antonucci PL (1998) Electrochem Solid State Lett 1:66–68CrossRefGoogle Scholar
  11. 11.
    Yoon KJ, Huang W, Ye G, Gopalan S, Pal UB, Seccombe DA (2007) J Electrochem Soc 154:B389CrossRefGoogle Scholar
  12. 12.
    Mench M (2008) Fuel cell engines. Wiley, HobokenCrossRefGoogle Scholar
  13. 13.
    Tang Z, Aaron D, Keith R, Papandrew A, Zawodzinski T Jr (2011) Proceedings of the 220th Electrochemical Society meeting (Submitted)Google Scholar
  14. 14.
    Cooper KR, Smith M (2006) J Power Sources 160:1088–1095CrossRefGoogle Scholar
  15. 15.
    Kazacos M, Skyllas-Kazacos M (1989) J Electrochem Soc 136:2759–2760CrossRefGoogle Scholar
  16. 16.
    Chen D, Wang S, Xiao M, Meng Y (2010) J Power Sources 195:2089–2095CrossRefGoogle Scholar
  17. 17.
    Kjeang E, Michel R, Harrington D, Djilali N, Sinton D (2008) J Am Chem Soc 130:4000–4006CrossRefGoogle Scholar
  18. 18.
    Yamamura T, Watanabe N, Yano T, Shiokawa Y (2005) J Electrochem Soc 152:A830–A836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Doug Aaron
    • 1
  • Zhijiang Tang
    • 1
  • Alexander B. Papandrew
    • 1
  • Thomas A. Zawodzinski
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Physical Chemistry of Materials GroupOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations