Advertisement

Evaluation of corrosion inhibitors performance using real-time monitoring methods

  • W. Villamizar-Suárez
  • J. M. Malo
  • A. Martínez-Villafañe
  • J. G. Chacon-Nava
Original Paper

Abstract

The implementation of real-time corrosion-monitoring techniques can provide a reliable mechanism for detecting the overall effectiveness of chemical treatment programs and contribute to the selection and implementation of an adequate corrosion inhibitor system. Inadequate corrosion monitoring can result in an increase of both uniform and localized (pitting) corrosion activities which can lead to premature material failures. The present research was undertaken to ascertain whether linear polarization resistance (LPR), harmonic analysis (HA), and electrochemical noise (EN) in combination are suitable for the study of performance of corrosion inhibitors under a wide variety of conditions; for example, in the absence and the presence of hydrocarbons with or without the addition of corrosion inhibitors. The findings showed questionable results regarding the usefulness of the pitting factor derived from EN and HA data. In addition, statistical parameters were obtained, such as skew and kurtosis, and these results were compared with the pitting factor.

Keywords

Inhibitors Electrochemical noise Harmonic analysis On-line monitoring Pitting factor Skew Kurtosis 

Notes

Acknowledgments

The authors would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, for financial support to conduct this study. The authours would also like to express their gratitude to Dr. M. Casales-Diaz for her assistance in this study.

References

  1. 1.
    Mok WY, Jenkins AE, Gamble CG (2003) International Conference “Corrosion Science in the 21st Century”, July 2003, paper no., C072, UMIST, Manchester, UKGoogle Scholar
  2. 2.
    Villamizar W, Magana CS, Chow H et al (2008) CORROSION 2008, paper no. 08286. NACE International, HoustonGoogle Scholar
  3. 3.
    Bosch RE, Bogaerts WF (1996) J Electrochem Soc 143:4033CrossRefGoogle Scholar
  4. 4.
    Mészaros L, Mészaros G, Lengyel B (1994) J Electrochem Soc 141:2068CrossRefGoogle Scholar
  5. 5.
    Pirnat A, Mészaros L, Lengyel B (1995) Corros Sci 37:963CrossRefGoogle Scholar
  6. 6.
    Durnie W, De Marco R, Jefferson A, Kinsella B (2002) Corros Sci 44:1223CrossRefGoogle Scholar
  7. 7.
    Gareth J, Rothwell N (2002) CORROSION 2002, paper no., 02337. NACE International, HoustonGoogle Scholar
  8. 8.
    Bell GEC, Rosenthal LM (2000) Lawson, CORROSION 2000, paper no., 00412. NACE International, HoustonGoogle Scholar
  9. 9.
    Teevens J (1998) CORROSION 98, paper no., 388. NACE International, HoustonGoogle Scholar
  10. 10.
    Ryder JC, Pickin NJ, Wooding GP (2001) CORROSION 2001, paper no. 01293. NACE International, HoustonGoogle Scholar
  11. 11.
    Barr EE, Greefiel Pierrard L (2001) CORROSION 2001, paper no. 01288. NACE International, HoustonGoogle Scholar
  12. 12.
    Papavinasam S, Revie RW, Attard M, Demoz A, Michaelian K (2003) Corrosion 59:1096CrossRefGoogle Scholar
  13. 13.
    Cottis RA, Al-Awadhi MAA, Al-Mazeedi HA, Turgoose S (2001) Electrochim Acta 46:3665–3674CrossRefGoogle Scholar
  14. 14.
    Mansfeld F, Sun Z (1999) Corrosion 55:915–918CrossRefGoogle Scholar
  15. 15.
    Sanchez-Amaya JM, Cottis RA, Botana FJ (2005) Corros Sci 47:3280–3299CrossRefGoogle Scholar
  16. 16.
    Stern M, Geary L (1957) J Electrochem Soc 104:56CrossRefGoogle Scholar
  17. 17.
    Tinnea J, Covino Jr. BS, Bullard SJ et al (2004) CORROSION 2004, paper no. 04435. NACE International, HoustonGoogle Scholar
  18. 18.
    Jovancicevic V, Ramachandran S, Prince P (1999) Corrosion 55:449CrossRefGoogle Scholar
  19. 19.
    Villamizar W, Casales M, González-Rodríguez J, Martinez L (2006) Mater Corros 57:696CrossRefGoogle Scholar
  20. 20.
    Villamizar W, Casales M, González-Rodríguez J, Martinez L (2007) J Solid State Electrochem 11:619CrossRefGoogle Scholar
  21. 21.
    Kelly RG, Inman ME, Hudson JL (1996) Electrochemical noise measurements for corrosion applications, ASTM SP-1277. In: Kearns JR, Scully JR, Roberge PA et al (eds). ASTM, West ConshohockenGoogle Scholar
  22. 22.
    Barr EE, Goodfellow R, Rosenthal LM (2000) CORROSION 2000, paper no. 414. NACE International, HoustonGoogle Scholar
  23. 23.
    Veilleux B, Lafront AM, Ghali E, Roberge PRJ (2003) J Appl Electrochem 33:1093CrossRefGoogle Scholar
  24. 24.
    Cappeln F, Bjerrum NJ, Petrushina IM (2005) J Electrochem Soc 152:B228Google Scholar
  25. 25.
    Zaveri NN, Sun R, Zufelt N, Zhou A, Chen YQ (2007) Electrochim Acta 52:5795CrossRefGoogle Scholar
  26. 26.
    Bagley G, Cottis R, Laycock PJ (1999) CORROSION 99, paper no. 191. NACE International, HoustonGoogle Scholar
  27. 27.
    Cottis R, Turgoose S (1999) Electrochemical impedance and noise. In: Syrett BC (ed) Corrosion testing made easy series. NACE International, HoustonGoogle Scholar
  28. 28.
    Cottis R (2001) J Corros Sci Eng 3(4). http://www.cp.umist.ac.uk/jcse/vol3/Paper4/v3p4.html
  29. 29.
    Al-Mazeedi HA, Cottis R (2004) CORROSION 2004, paper no. 04460. NACE International, HoustonGoogle Scholar
  30. 30.
    Nagiub A, Mansfeld F (2001) Corros Sci 43:2147CrossRefGoogle Scholar
  31. 31.
    Tristancho JL, Fabian O, Flores LC (2006) IX IBEROMET materials and metallurgy. IberoAmerican Congress, La Habana, pp 144–150Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • W. Villamizar-Suárez
    • 1
    • 2
  • J. M. Malo
    • 3
  • A. Martínez-Villafañe
    • 1
  • J. G. Chacon-Nava
    • 1
  1. 1.Centro de Investigación en Materiales AvanzadosChihuahua, ChihMexico
  2. 2.Instituto Colombiano del PetroleoSantanderColombia
  3. 3.Instituto de Investigaciones EléctricasMorelosMexico

Personalised recommendations