Advertisement

Pulse current electrodeposition and corrosion properties of Ni–W alloy coatings

  • M. Zemanová
  • M. Krivosudská
  • M. Chovancová
  • V. Jorík
Original Paper

Abstract

Ni–W alloy coatings were prepared on a mild steel substrate by means of pulse current (PC) and compared to the coatings electrodeposited by direct current (DC). In particular the study dealt with the influence of the frequency using pulse current on the surface morphology while maintaining a constant duty cycle. A constant charge for DC and PC electrodeposition of Ni–W alloy coatings was used. The morphology of the coatings was explored by scanning electron microscopy and the composition of the coatings was analysed by X-ray powder diffraction and energy dispersive X-ray analysis. Corrosion resistance of Ni–W alloy coatings was investigated by potentiodynamic polarization in a chloride medium. The corrosion products were analysed by Raman spectroscopy. It was found that the temperature of the electrolysis affects current efficiency of the DC and PC electrodeposition. The frequency of pulse electrodeposition alters the morphology of the Ni–W alloy coatings. There was evidence of the positive influence of increased tungstate concentration in the electrolyte on corrosion resistance of the Ni–W alloy coatings.

Keywords

Ni–W alloy Pulse plating Electrodeposition Morphology Corrosion resistance 

Notes

Acknowledgement

The financial support of the Slovak Grant Agency research projects 1/0535/08 and 1/0579/10 is greatly acknowledged. M. Zemanová appreciates proof reading by K. Boehling (TU Darmstadt).

References

  1. 1.
    Brenner A (1963) Electrodeposition of alloys, vol II. Academic Press, New YorkGoogle Scholar
  2. 2.
    Eliaz N, Shridhar TM, Gileadi E (2005) Electrochim Acta 50:2893CrossRefGoogle Scholar
  3. 3.
    Obradovic MD, Bošnjakov GŽ, Stevanovic RM, Maksimovic MD, Despic AR (2006) Surf Coat Technol 200:4201CrossRefGoogle Scholar
  4. 4.
    Gáliková Z, Danielik V, Chovancová M (2006) Chem Pap 60:353CrossRefGoogle Scholar
  5. 5.
    Krishnan RM, Kennedy CJ, Jayakrishnan S, Sriveeraraghavan S, Natarajan SR, Venkatakrishnan PG (1995) Met Finish 93:33CrossRefGoogle Scholar
  6. 6.
    Slavcheva E, Mokwa W, Schnakenberg F (2005) Electrochim Acta 50:5573CrossRefGoogle Scholar
  7. 7.
    de Lima P, Correia AN, Santana RAC, Colares RP, Barros EB, Casciano PNS, Vaz GL (2010) Electrochim Acta 55:2078CrossRefGoogle Scholar
  8. 8.
    Atanassov N, Gencheva K, Bratoeva M (1997) Plat Surf Finish 84:67Google Scholar
  9. 9.
    Yao S, Zhao S, Guo H, Kowaka M (1996) Corrosion 52:183CrossRefGoogle Scholar
  10. 10.
    Klug HP, Alexander L (1980) X-Ray procedures for polycrystalline and amorphous materials. Wiley/Interscience, New YorkGoogle Scholar
  11. 11.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. John Wiley and Sons, New YorkGoogle Scholar
  12. 12.
    Joska L, Novák P (2001) Polarization resistance. In: Proceedings from II. International conference corrosion and influence on steel constructions. Tlačiareň Brno, BrnoGoogle Scholar
  13. 13.
    Landolt D, Marlot A (2003) Surf Coat Technol 169–170:8CrossRefGoogle Scholar
  14. 14.
    Puippe JC, Leaman F (1986) Theory and practise of pulse plating. American Electroplaters and Surface Finishers Soc, OrlandoGoogle Scholar
  15. 15.
    Tury B, Lakatos-Varsanyi M, Roy S (2006) Surf Coat Technol 200:6713CrossRefGoogle Scholar
  16. 16.
    Juškenas R, Valsiunas I, Pakštas V, Giraitis R (2009) Electrochim Acta 54:2616CrossRefGoogle Scholar
  17. 17.
    Laugier J, Bochu B (2000) LMGP-suite suite of programs for the interpretation of X-ray experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, Saint Martin d’HéresGoogle Scholar
  18. 18.
    Wojdyr M (2010) J Appl Cryst 43:1126CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Sridhar TM, Eliaz N, Gileadi E (2005) Electrochem Solid State Lett C58:8Google Scholar
  21. 21.
    Juškenas R, Valsiunas I, Pakštas V, Selskis A, Jasulaitiene V, Karpavičiene V, Kapočius V (2006) Appl Surf Sci 253:1435CrossRefGoogle Scholar
  22. 22.
    Yamasaki T, Tomohira R, Ogino Y, Schlossmacher P, Ehrlich K (2000) Plat Surf Finish 87:148Google Scholar
  23. 23.
    Kabi S, Raeissi K, Saatchi A (2009) J Appl Electrochem 39:1279CrossRefGoogle Scholar
  24. 24.
    Alimadadi H, Ahmadi M, Aliofkhazraei M, Younesi SR (2009) Mater Des 30:1356CrossRefGoogle Scholar
  25. 25.
    Oblonsky LJ, Devine TM (1995) Corros Sci 37:17CrossRefGoogle Scholar
  26. 26.
    Lillard RS, Kanner GS, Daemen LL (2002) Electrochim Acta 47:2473CrossRefGoogle Scholar
  27. 27.
    Sriraman KR, Raman SGS, Seshadri E (2007) Mater Sci Eng 460–461:39Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Zemanová
    • 1
  • M. Krivosudská
    • 1
  • M. Chovancová
    • 1
  • V. Jorík
    • 1
  1. 1.Department of Inorganic Technology in BratislavaSTU in BratislavaBratislavaSlovakia

Personalised recommendations