Journal of Applied Electrochemistry

, Volume 41, Issue 8, pp 925–937 | Cite as

Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells

  • G. F. Alvarez
  • M. Mamlouk
  • S. M. Senthil Kumar
  • K. Scott
Original Paper


Pd nanoparticles have been synthesised using different reducing agents, including ethylene glycol (EG), formaldehyde and sodium borohydride and their activity for the oxygen reduction reaction (ORR) evaluated. The use of EG led to the best morphology for the ORR and this synthetic method was optimised by adjusting the system pH. Carbon-supported Pd nanoparticles of approximately 7 nm diameter were obtained when reduction took place in the alkaline region. Pd synthesised by EG reduction at pH 11 presented the highest mass activity 20 A g−2 and active surface area 15 m2 g−1. These synthetic conditions were used in further synthesis. The effect of heat treatment in H2 atmosphere was also studied; and increased size of the palladium nanoparticles was observed in every case. The Pd/C catalyst synthesised by reduction with EG at pH 11 was tested in a low temperature H2/O2 (air) PEMFC with a Nafion® 112 membrane, at 20 and 40 °C. Current densities at 0.5 V, with O2 fed to the cathode, at 40 °C were 1.40 A cm−2 and peak power densities 0.79 W cm−2, approximately; which compared with 1.74 A cm−2 and 0.91 W cm−2, respectively for a commercial Pt/C.


Pd nanoparticles Ethylene glycol synthesis Oxygen reduction reaction Polymer electrolyte membrane fuel cells 



The work described in this paper was supported by the EPSRC SUPERGEN fuel cell consortium award.


  1. 1.
    Gasteiger HA, Kocha SS, Sompalli B et al (2005) Appl Catal B 56:9CrossRefGoogle Scholar
  2. 2.
    Xiong L, Manthiram A (2005) Electrochim Acta 50:2323CrossRefGoogle Scholar
  3. 3.
    Xiong L, Kannan AM, Manthiram A (2002) Electrochem Commun 4:898CrossRefGoogle Scholar
  4. 4.
    Salgado JRC, Antolini E, Gonzalez ER (2004) J Electrochem Soc 151:A2143CrossRefGoogle Scholar
  5. 5.
    Paulus UA, Wokaun A, Scherer GG et al (2002) J Phys Chem B 106:4181CrossRefGoogle Scholar
  6. 6.
    Ioroi T, Yasuda K (2005) J Electrochem Soc 152:A1917CrossRefGoogle Scholar
  7. 7.
    Fernández JL, Raghuveer V, Manthiram A et al (2005) J Am Chem Soc 127:13100CrossRefGoogle Scholar
  8. 8.
    Shao M-H, Sasaki K, Adzic RR (2006) J Am Chem Soc 128:3526CrossRefGoogle Scholar
  9. 9.
    Wang X, Kariuki N, Vaughey JT et al (2008) J Electrochem Soc 155:B602CrossRefGoogle Scholar
  10. 10.
    Mustain WE, Kepler K, Prakash J (2006) Electrochem Commun 8:406CrossRefGoogle Scholar
  11. 11.
    Papageorgopoulos DC, Keijzer M, Veldhuis JBJ et al (2002) J Electrochem Soc 149:A1400CrossRefGoogle Scholar
  12. 12.
    Machida K, Enyo M (1987) J Electrochem Soc 134:1472CrossRefGoogle Scholar
  13. 13.
    Lewis FA (1982) Platin Met Rev 26:20Google Scholar
  14. 14.
    Damjanovic A, Brusic V (1967) Electrochim Acta 12:1171CrossRefGoogle Scholar
  15. 15.
    Chaston JC, Sercombe EJ (1961) Platin Met Rev 5:122–125Google Scholar
  16. 16.
    Pope D, Smith WL, Eastlake MJ et al (1971) J Catal 22:72CrossRefGoogle Scholar
  17. 17.
    Bond GC (1975) Platin Met Rev 19:126Google Scholar
  18. 18.
    Moreira J, del Angel P, Ocampo AL et al (2004) Int J Hydrog Energy 29:915CrossRefGoogle Scholar
  19. 19.
    Fernández JL, Walsh DA, Bard AJ (2004) J Am Chem Soc 127:357CrossRefGoogle Scholar
  20. 20.
    Salgado JRC, Antolini E, Gonzalez ER (2004) J Phys Chem B 108:17767CrossRefGoogle Scholar
  21. 21.
    Chan K-Y, Ding J, Ren J et al (2004) J Mater Chem 14:505CrossRefGoogle Scholar
  22. 22.
    Larcher D, Patrice R (2000) J Solid State Chem 154:405CrossRefGoogle Scholar
  23. 23.
    Li H, Sun G, Gao Y et al (2007) J Phys Chem C 111:15192CrossRefGoogle Scholar
  24. 24.
    Guha A, Lu W, Zawodzinski TA Jr et al (2007) Carbon 45:1506CrossRefGoogle Scholar
  25. 25.
    Mallát T, Polyánszky É, Petró J (1976) J Catal 44:345CrossRefGoogle Scholar
  26. 26.
    Breiter MW (1977) J Electroanal Chem 81:275CrossRefGoogle Scholar
  27. 27.
    Lee K, Savadogo O, Ishihara A et al (2006) J Electrochem Soc 153:A20CrossRefGoogle Scholar
  28. 28.
    Suo Y, Zhuang L, Lu J (2007) Angew Chem Int Ed 46:2862CrossRefGoogle Scholar
  29. 29.
    Zhang L, Lee K, Zhang J (2007) Electrochim Acta 52:7964CrossRefGoogle Scholar
  30. 30.
    Canton P, Meneghini C, Riello P et al (2001) J Phys Chem B 105:8088CrossRefGoogle Scholar
  31. 31.
    Jiang L, Hsu A, Chu D et al (2009) J Electrochem Soc 156:B643CrossRefGoogle Scholar
  32. 32.
    Burke LD, Buckley DT (1996) J Electrochem Soc 143:845CrossRefGoogle Scholar
  33. 33.
    Burke LD, Casey JK (1993) J Electrochem Soc 140:1284CrossRefGoogle Scholar
  34. 34.
    Rand DAJ, Woods R (1972) J Electroanal Chem 35:209CrossRefGoogle Scholar
  35. 35.
    Solla-GulloÌon J, Montiel V, Aldaz A, Clavilier J (2003) J Electrochem Soc 150:E104–E109CrossRefGoogle Scholar
  36. 36.
    Zeng J, Lee JY, Zhou W (2006) Appl Catal A 308:99CrossRefGoogle Scholar
  37. 37.
    Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163CrossRefGoogle Scholar
  38. 38.
    Li H, Sun G, Jiang Q et al (2007) Electrochem Commun 9:1410CrossRefGoogle Scholar
  39. 39.
    Grigoriev SA, Millet P, Fateev VN (2008) J Power Sour 177:281CrossRefGoogle Scholar
  40. 40.
    Luo C, Zhang Y, Wang Y (2005) J Mol Catal A Chem 229:7CrossRefGoogle Scholar
  41. 41.
    Damjanovic A, Brusic V (1967) Electrochim Acta 12:615Google Scholar
  42. 42.
    Sleightholme AES (2007) Electrochemical studies of fuel cell catalysts. PhD thesis, Imperial College, LondonGoogle Scholar
  43. 43.
    Damjanovic A (1967) J Phys Chem 71:2741CrossRefGoogle Scholar
  44. 44.
    Wang X, Kariuki N, Myers D et al (2006) DOE hydrogen program. Annual Progress Report FY 2006:791Google Scholar
  45. 45.
    Parthasarathy A, Martin CR, Srinivasan S (1991) J Electrochem Soc 138:916CrossRefGoogle Scholar
  46. 46.
    Gnanamuthu DS, Petrocelli JV (1967) J Electrochem Soc 114:1036CrossRefGoogle Scholar
  47. 47.
    Mustain WE, Kepler K, Prakash J (2006) Electrochimica Acta 52:2102–21028Google Scholar
  48. 48.
    Savadogo O, Lee K, Oishi K et al (2004) Electrochem Commun 6:105CrossRefGoogle Scholar
  49. 49.
    Hoare JP (1965) J Electrochem Soc 112:1129CrossRefGoogle Scholar
  50. 50.
    Tilak BV, Tari K, Hoover CL (1988) J Electrochem Soc 135:1386CrossRefGoogle Scholar
  51. 51.
    Gubbins KE, Walker RDJ (1965) J Electrochem Soc 112:469CrossRefGoogle Scholar
  52. 52.
    Scott K, Mamlouk M (2009) Int J Hydrog Energy 34:9195CrossRefGoogle Scholar
  53. 53.
    Mustain WE, Prakash J (2007) J Power Sour 170:28CrossRefGoogle Scholar
  54. 54.
    Paulus UA, Schmidt TJ, Gasteiger HA et al (2001) J Electroanal Chem 495:134CrossRefGoogle Scholar
  55. 55.
    Ficicilar B, Bayrakceken A, Eroglu I (2009) J Power Sour 193:17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. F. Alvarez
    • 1
  • M. Mamlouk
    • 1
  • S. M. Senthil Kumar
    • 1
  • K. Scott
    • 1
  1. 1.School of Chemical Engineering and Advanced MaterialsNewcastle UniversityNewcastle Upon TyneUK

Personalised recommendations