Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 7, pp 867–872 | Cite as

Photoelectrochemical characterization of the synthetic crednerite CuMnO2

  • B. Bellal
  • B. Hadjarab
  • N. Benreguia
  • Y. Bessekhouad
  • M. Trari
Original Paper

Abstract

High quality crednerite CuMnO2 was prepared by solid state reaction at 950 °C under argon flow. The oxide crystallizes in a monoclinically distorted delafossite structure associated to the static Jahn–Teller (J–T) effect of Mn3+ ion. Thermal analysis showed that it converts reversibly to spinel Cu x Mn3−x O4 at ~420 °C in air and further heating reform the crednerite above 940 °C. CuMnO2 is p-type, narrow semiconductor band gap with a direct optical gap of 1.31 eV. It exhibits a long-term chemical stability in basic medium (KOH 0.5 M), the semi logarithmic plot gave an exchange current density of 0.2 μA cm−2 and a corrosion potential of ~−0.1 VSCE. The electrochemical oxygen insertion/desinsertion is evidenced from the intensity–potential characteristics. The flat band potential (V fb = −0.26 VSCE) and the holes density (N A  = 5.12 × 1018 cm−3) were determined, respectively, by extrapolating the curve C 2 versus the potential to the intersection with C 2  = 0 and from the slope of the Mott–Schottky plot. From photoelectrochemical measurements, the valence band formed from Cu-3d wave function is positioned at 5.24 ± 0.02 eV below vacuum. The Nyquist representation shows straight line in the high frequency range with an angle of 65° ascribed to Warburg impedance originating from oxygen intercalation and compatible with a system under mass transfer control. The electrochemical junction is modeled by an equivalent electrical circuit thanks to the Randles model.

Keywords

Crednerite p-Type semiconductor Photoelectrochemical Nyquist plot 

Notes

Acknowledgments

We thank Dr A. Louafi for helpful discussion regarding the EIS interpretation and Dr M. Kebir for assistance in obtaining the X-ray powder data. Financial support was provided by the Faculty of Chemistry (Algiers).

References

  1. 1.
    Bellal B, Hadjarab B, Bouguelia A, Trari M (2009) Theor Exp Chem 45:172CrossRefGoogle Scholar
  2. 2.
    Alam KM, Yang OB (2009) Catal Today 146(1):177CrossRefGoogle Scholar
  3. 3.
    Stroyuk AL, Kryukov AI, Kuchmii SYa, Pokhodenko VD (2009) Theor Exp Chem 45:209CrossRefGoogle Scholar
  4. 4.
    Brahimi R, Bessekhouad Y, Bouguelia B, Trari M (2007) Catal Today 122:62CrossRefGoogle Scholar
  5. 5.
    Rajeshwar K (2007) J Appl Electrochem 37:765CrossRefGoogle Scholar
  6. 6.
    Trari M, Bouguelia B, Bessekhouad Y (2006) Sol Energy Mater Sol Cells 90:190CrossRefGoogle Scholar
  7. 7.
    Dordor P, Chaminade JP, Wichainchai A, Marquestaut E, Doumerc JP, Pouchard M, Hagenmuller P (1988) J Solid State Chem 75:105CrossRefGoogle Scholar
  8. 8.
    Guranathan K, Baeg JO, Mi Lee S, Subramanian E, Moon SJ, Kong KJ (2003) Catal Commun 9:395CrossRefGoogle Scholar
  9. 9.
    Barnabé A, Mugnier E, Presmanes L, Tailhades Ph (2006) Mater Lett 60(29):3468CrossRefGoogle Scholar
  10. 10.
    Dong H, Li Z, Xu X, Ding Z, Wu L, Wang X, Fu X (2009) Appl Catal B 89:551CrossRefGoogle Scholar
  11. 11.
    Omeiri S, Gabès Y, Bouguelia A, Trari M (2008) J Electroanal Chem 614:31CrossRefGoogle Scholar
  12. 12.
    Kondrashev ID (1959) Sov Phys Crystallogr 3:703Google Scholar
  13. 13.
    Töpfer J, Trari M, Gravereau P, Chaminade JP, Doumerc JP (1995) Z Kristallogr 210:184CrossRefGoogle Scholar
  14. 14.
    Bessekhouad Y, Trari M, Doumerc JP (2003) Int J Hydrog Energy 28:43CrossRefGoogle Scholar
  15. 15.
    Doumerc JP, Trari M, Töpfer J, Fournès L, Grenier JC, Pouchard M, Hagenmuller P (1994) Eur J Solid State Inorg Chem 31:705Google Scholar
  16. 16.
    Trari M, Töpfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751CrossRefGoogle Scholar
  17. 17.
    Bessekouad Y, Gabes Y, Bouguelia A, Trari M (2007) J Mater Sci 42(15):6469CrossRefGoogle Scholar
  18. 18.
    Lalanne M, Barnabé A, Mathieu F, Thailhades Ph (2009) Inorg Chem 48:6065CrossRefGoogle Scholar
  19. 19.
    Goodenough JB (1983) In: Procceding in the second European conference on solid state chemistry, Veldhoven, the NetherlandsGoogle Scholar
  20. 20.
    Bellal B, Saadi S, Koriche N, Bouguelia A, Trari M (2009) J Phys Chem Solids 70(7):1132CrossRefGoogle Scholar
  21. 21.
    Brahimi R, Trari M, Bouguelia A, Bessekhouad Y (2010) J Solid State Electrochem 14:1333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • B. Bellal
    • 1
  • B. Hadjarab
    • 2
  • N. Benreguia
    • 1
  • Y. Bessekhouad
    • 1
  • M. Trari
    • 1
  1. 1.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria
  2. 2.Laboratory of Solid Solutions, Faculty of PhysicUSTHBAlgiersAlgeria

Personalised recommendations