Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 589–597 | Cite as

Screening of PdM and PtM catalysts in a multi-anode direct formic acid fuel cell

Original Paper


Direct formic acid fuel cells (DFAFC) currently employ either Pt-based or Pd-based anode catalysts for oxidation of formic acid. However, improvements are needed in either the activity of Pt-based catalysts or the stability of Pd-based catalysts. In this study, a number of carbon-supported Pt-based and Pd-based catalysts, were prepared by co-depositing PdM (M = Bi, Mo, or V) on Vulcan® XC-72 carbon black, or depositing another metal (Pb or Sn) on a Pt/C catalyst. These catalysts were systematically evaluated and compared with commercial Pd/C, PtRu/C, and Pt/C catalysts in a multi-anode DFAFC. The PtPb/C and PtSn/C catalysts were found to show significantly higher activities than the commercial Pt/C catalyst, while the PdBi/C provided higher stability than the commercial Pd/C catalyst.


Direct formic acid fuel cell Array membrane electrode assemblies Catalyst screening Pd, Pt, stability 



This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Strategic Projects Grant in partnership with Tekion (Canada) Inc., and by Memorial University.


  1. 1.
    Yu X, Pickup PG (2008) J Power Sources 177:124CrossRefGoogle Scholar
  2. 2.
    Uhm S, Lee HJ et al (2009) Phys Chem Chem Phys 11:9326CrossRefGoogle Scholar
  3. 3.
    Weber M, Wang JT et al (1996) J Electrochem Soc 143:L158CrossRefGoogle Scholar
  4. 4.
    Yu X, Pickup PG (2009) J Power Sources 192:279CrossRefGoogle Scholar
  5. 5.
    Wu YN, Liao SJ et al (2010) J Power Sources 195:6459CrossRefGoogle Scholar
  6. 6.
    Kang YY, Ren MJ et al (2010) Electrochim Acta 55:5274CrossRefGoogle Scholar
  7. 7.
    Haan JL, Stafford KM et al (2010) Electrochim Acta 55:2477CrossRefGoogle Scholar
  8. 8.
    Haan JL, Stafford KM et al (2010) J Phys Chem C 114:11665CrossRefGoogle Scholar
  9. 9.
    Feliu JM, Herrero E et al (2003) In: Vielstich W, Gasteiger HA (eds) Handbook of Fuel Cells, vol 2. Wiley, New York, p 679Google Scholar
  10. 10.
    Garin F (2004) Catal Today 89:255CrossRefGoogle Scholar
  11. 11.
    Samjeske G, Miki A et al (2006) J Phys Chem B 110:16559CrossRefGoogle Scholar
  12. 12.
    Pan Y, Zhang R et al (2009) Electrochem Solid State Lett 12:B23CrossRefGoogle Scholar
  13. 13.
    Rice C, Ha S et al (2003) J Power Sources 115:229CrossRefGoogle Scholar
  14. 14.
    Choi JH, Jeong KJ et al (2006) J Power Sources 163:71CrossRefGoogle Scholar
  15. 15.
    Waszczuk P, Barnard TM et al (2002) Electrochem Commun 4:599CrossRefGoogle Scholar
  16. 16.
    Zhang S, Shao YY et al (2010) J Power Sources 195:1103CrossRefGoogle Scholar
  17. 17.
    Bai YC, Zhang WD et al (2011) J Alloys Compd 509:1029CrossRefGoogle Scholar
  18. 18.
    Herrero E, Fernandez-Vega A et al (1993) J Electroanal Chem 350:73CrossRefGoogle Scholar
  19. 19.
    Volpe D, Casado-Rivera E et al (2004) J Electrochem Soc 151:A971CrossRefGoogle Scholar
  20. 20.
    Zhang LJ, Wang ZY et al (2006) J Alloys Compd 426:268CrossRefGoogle Scholar
  21. 21.
    Uhm SY, Chung ST et al (2007) Electrochem Commun 9:2027CrossRefGoogle Scholar
  22. 22.
    Matsumoto F, Roychowdhury C et al (2008) J Electrochem Soc 155:B148CrossRefGoogle Scholar
  23. 23.
    Yu X, Pickup PG (2010) Electrochim Acta 55:7354CrossRefGoogle Scholar
  24. 24.
    Ji XL, Lee KT et al (2010) Nat Chem 2:286CrossRefGoogle Scholar
  25. 25.
    Casado-Rivera E, Volpe DJ et al (2004) J Am Chem Soc 126:4043CrossRefGoogle Scholar
  26. 26.
    Lee JK, Jeon H et al (2008) Electrochim Acta 53:6089CrossRefGoogle Scholar
  27. 27.
    Peng B, Wang JY et al (2009) Electrochem Commun 11:831CrossRefGoogle Scholar
  28. 28.
    Peng B, Wang HF et al (2010) J Phys Chem C 114:3102CrossRefGoogle Scholar
  29. 29.
    Larsen R, Ha S et al (2006) J Power Sources 157:78CrossRefGoogle Scholar
  30. 30.
    Jiang JH, Kucernak A (2009) Electrochim Acta 54:4545CrossRefGoogle Scholar
  31. 31.
    Zhang ZH, Ge JJ et al (2009) Fuel Cells 9:114CrossRefGoogle Scholar
  32. 32.
    Liu ZL, Zhang XH (2009) Electrochem Commun 11:1667CrossRefGoogle Scholar
  33. 33.
    Yu XW, Pickup PG (2010) Electrochem Commun 12:800CrossRefGoogle Scholar
  34. 34.
    Morales-Acosta D, Ledesma-Garcia J et al (2010) J Power Sources 195:461CrossRefGoogle Scholar
  35. 35.
    Yu X, Pickup PG (2009) J Power Sources 187:493CrossRefGoogle Scholar
  36. 36.
    Larsen R, Zakzeski J et al (2005) Electrochem Solid State Lett 8:A291CrossRefGoogle Scholar
  37. 37.
    Iordache C, Blair S, et al (2008) World Patent : WO 2008/080227 AlGoogle Scholar
  38. 38.
    Yu X, Pickup PG (2009) Int J Green Energy 6:571CrossRefGoogle Scholar
  39. 39.
    Yi QF, Zhang JJ et al (2008) J Appl Electrochem 38:695CrossRefGoogle Scholar
  40. 40.
    Liu ZL, Guo B et al (2008) J Power Sources 184:16CrossRefGoogle Scholar
  41. 41.
    Zhang LL, Lu TH et al (2006) Electrochem Commun 8:1625CrossRefGoogle Scholar
  42. 42.
    Li G, Pickup PG (2007) J Power Sources 173:121CrossRefGoogle Scholar
  43. 43.
    Law WL, Platt AM et al (2009) J Electrochem Soc 156:B553CrossRefGoogle Scholar
  44. 44.
    Masel RI, Zhu Y, et al (2007) UK Patent: GB2424650BGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations