Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 589–597 | Cite as

Screening of PdM and PtM catalysts in a multi-anode direct formic acid fuel cell

  • Xingwen Yu
  • Peter G. Pickup
Original Paper

Abstract

Direct formic acid fuel cells (DFAFC) currently employ either Pt-based or Pd-based anode catalysts for oxidation of formic acid. However, improvements are needed in either the activity of Pt-based catalysts or the stability of Pd-based catalysts. In this study, a number of carbon-supported Pt-based and Pd-based catalysts, were prepared by co-depositing PdM (M = Bi, Mo, or V) on Vulcan® XC-72 carbon black, or depositing another metal (Pb or Sn) on a Pt/C catalyst. These catalysts were systematically evaluated and compared with commercial Pd/C, PtRu/C, and Pt/C catalysts in a multi-anode DFAFC. The PtPb/C and PtSn/C catalysts were found to show significantly higher activities than the commercial Pt/C catalyst, while the PdBi/C provided higher stability than the commercial Pd/C catalyst.

Keywords

Direct formic acid fuel cell Array membrane electrode assemblies Catalyst screening Pd, Pt, stability 

Notes

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Strategic Projects Grant in partnership with Tekion (Canada) Inc., and by Memorial University.

References

  1. 1.
    Yu X, Pickup PG (2008) J Power Sources 177:124CrossRefGoogle Scholar
  2. 2.
    Uhm S, Lee HJ et al (2009) Phys Chem Chem Phys 11:9326CrossRefGoogle Scholar
  3. 3.
    Weber M, Wang JT et al (1996) J Electrochem Soc 143:L158CrossRefGoogle Scholar
  4. 4.
    Yu X, Pickup PG (2009) J Power Sources 192:279CrossRefGoogle Scholar
  5. 5.
    Wu YN, Liao SJ et al (2010) J Power Sources 195:6459CrossRefGoogle Scholar
  6. 6.
    Kang YY, Ren MJ et al (2010) Electrochim Acta 55:5274CrossRefGoogle Scholar
  7. 7.
    Haan JL, Stafford KM et al (2010) Electrochim Acta 55:2477CrossRefGoogle Scholar
  8. 8.
    Haan JL, Stafford KM et al (2010) J Phys Chem C 114:11665CrossRefGoogle Scholar
  9. 9.
    Feliu JM, Herrero E et al (2003) In: Vielstich W, Gasteiger HA (eds) Handbook of Fuel Cells, vol 2. Wiley, New York, p 679Google Scholar
  10. 10.
    Garin F (2004) Catal Today 89:255CrossRefGoogle Scholar
  11. 11.
    Samjeske G, Miki A et al (2006) J Phys Chem B 110:16559CrossRefGoogle Scholar
  12. 12.
    Pan Y, Zhang R et al (2009) Electrochem Solid State Lett 12:B23CrossRefGoogle Scholar
  13. 13.
    Rice C, Ha S et al (2003) J Power Sources 115:229CrossRefGoogle Scholar
  14. 14.
    Choi JH, Jeong KJ et al (2006) J Power Sources 163:71CrossRefGoogle Scholar
  15. 15.
    Waszczuk P, Barnard TM et al (2002) Electrochem Commun 4:599CrossRefGoogle Scholar
  16. 16.
    Zhang S, Shao YY et al (2010) J Power Sources 195:1103CrossRefGoogle Scholar
  17. 17.
    Bai YC, Zhang WD et al (2011) J Alloys Compd 509:1029CrossRefGoogle Scholar
  18. 18.
    Herrero E, Fernandez-Vega A et al (1993) J Electroanal Chem 350:73CrossRefGoogle Scholar
  19. 19.
    Volpe D, Casado-Rivera E et al (2004) J Electrochem Soc 151:A971CrossRefGoogle Scholar
  20. 20.
    Zhang LJ, Wang ZY et al (2006) J Alloys Compd 426:268CrossRefGoogle Scholar
  21. 21.
    Uhm SY, Chung ST et al (2007) Electrochem Commun 9:2027CrossRefGoogle Scholar
  22. 22.
    Matsumoto F, Roychowdhury C et al (2008) J Electrochem Soc 155:B148CrossRefGoogle Scholar
  23. 23.
    Yu X, Pickup PG (2010) Electrochim Acta 55:7354CrossRefGoogle Scholar
  24. 24.
    Ji XL, Lee KT et al (2010) Nat Chem 2:286CrossRefGoogle Scholar
  25. 25.
    Casado-Rivera E, Volpe DJ et al (2004) J Am Chem Soc 126:4043CrossRefGoogle Scholar
  26. 26.
    Lee JK, Jeon H et al (2008) Electrochim Acta 53:6089CrossRefGoogle Scholar
  27. 27.
    Peng B, Wang JY et al (2009) Electrochem Commun 11:831CrossRefGoogle Scholar
  28. 28.
    Peng B, Wang HF et al (2010) J Phys Chem C 114:3102CrossRefGoogle Scholar
  29. 29.
    Larsen R, Ha S et al (2006) J Power Sources 157:78CrossRefGoogle Scholar
  30. 30.
    Jiang JH, Kucernak A (2009) Electrochim Acta 54:4545CrossRefGoogle Scholar
  31. 31.
    Zhang ZH, Ge JJ et al (2009) Fuel Cells 9:114CrossRefGoogle Scholar
  32. 32.
    Liu ZL, Zhang XH (2009) Electrochem Commun 11:1667CrossRefGoogle Scholar
  33. 33.
    Yu XW, Pickup PG (2010) Electrochem Commun 12:800CrossRefGoogle Scholar
  34. 34.
    Morales-Acosta D, Ledesma-Garcia J et al (2010) J Power Sources 195:461CrossRefGoogle Scholar
  35. 35.
    Yu X, Pickup PG (2009) J Power Sources 187:493CrossRefGoogle Scholar
  36. 36.
    Larsen R, Zakzeski J et al (2005) Electrochem Solid State Lett 8:A291CrossRefGoogle Scholar
  37. 37.
    Iordache C, Blair S, et al (2008) World Patent : WO 2008/080227 AlGoogle Scholar
  38. 38.
    Yu X, Pickup PG (2009) Int J Green Energy 6:571CrossRefGoogle Scholar
  39. 39.
    Yi QF, Zhang JJ et al (2008) J Appl Electrochem 38:695CrossRefGoogle Scholar
  40. 40.
    Liu ZL, Guo B et al (2008) J Power Sources 184:16CrossRefGoogle Scholar
  41. 41.
    Zhang LL, Lu TH et al (2006) Electrochem Commun 8:1625CrossRefGoogle Scholar
  42. 42.
    Li G, Pickup PG (2007) J Power Sources 173:121CrossRefGoogle Scholar
  43. 43.
    Law WL, Platt AM et al (2009) J Electrochem Soc 156:B553CrossRefGoogle Scholar
  44. 44.
    Masel RI, Zhu Y, et al (2007) UK Patent: GB2424650BGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations