Journal of Applied Electrochemistry

, Volume 41, Issue 3, pp 345–353 | Cite as

A practical photoelectrochemical cell using non precious metal electrodes

  • Patrick Enright
  • Anthony Betts
  • John Cassidy
Original Paper


In this study a Photoelectrochemical Cell (PEC) constructed with inexpensive materials photodegraded selected organic compounds present in model waste waters, with the concomitant production of electrical current. Organic substrates dissolved in salt water included formic acid, 2-propanol, 1,2-dihydroxybenzene and ascorbic acid. Significant degradation of ascorbic acid was achieved when the cell was illuminated with a household 60 W tungsten light bulb, although better results were achieved with UV sources. Degradation of all the compounds was found to occur by zero order kinetics, and the PEC was shown not to work appreciably in dark conditions. Using a conventional light bulb, a formic acid PEC produced a power density of 19.1 ± 2 mW m−2. When exposed to natural daylight, a power density of 31.5 ± 2 mW m−2 was achieved. There is considerable scope for scale up of this device for exterior use.


Photoelectrochemical cell TiO2 photocatalysis Formic acid Fuel cell Water remediation Alternative energy Catechol Ascorbic acid Isopropanol 



PE would like to thank DIT for the award of a TERS PhD fellowship and also acknowledge RCSI for the loan of a 150 W Xe arc lamp.

Supplementary material

10800_2010_244_MOESM1_ESM.xls (74 kb)
Supplementary material 1 (XLS 74 kb)


  1. 1.
    Sheng Lin H, Chuen Wang S (2004) J Hazard Mater 106B:161Google Scholar
  2. 2.
    Harrison DP, Valsaraj KT, Wetzel DM (1993) Waste Manag 13:417CrossRefGoogle Scholar
  3. 3.
    Min B, Cheng S, Logan BE (2005) Water Res 39:1675CrossRefGoogle Scholar
  4. 4.
    Oh SE, Logan BE (2005) Water Res 39:4673CrossRefGoogle Scholar
  5. 5.
    Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Water Res 39:4961CrossRefGoogle Scholar
  6. 6.
    Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Water Res 39:942CrossRefGoogle Scholar
  7. 7.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  8. 8.
    Frank SN, Bard AJ (1977) J Am Chem Soc 99:4667CrossRefGoogle Scholar
  9. 9.
    Frank SN, Bard AJ (1977) J Am Chem Soc 99:303CrossRefGoogle Scholar
  10. 10.
    Frank SN, Bard AJ (1977) J Phys Chem 81:1484CrossRefGoogle Scholar
  11. 11.
    Kaneko M, Nemoto J, Ueno H, Gokan N, Ohnuki K, Horikawa M, Saito R, Shibata T (2006) Electrochem Commun 8:336CrossRefGoogle Scholar
  12. 12.
    Kaneko M, Ueno H, Ohnuki K, Horikawa M, Saito R, Nemoto J (2007) Biosens Bioelectron 23:140CrossRefGoogle Scholar
  13. 13.
    Hirano K, Suzuki E, Ishikawa A, Moroi T, Shiroishi H, Kaneko M (2000) J Photochem Photobiol A Chem 136:157CrossRefGoogle Scholar
  14. 14.
    Kaneko M, Hoshi T, Kaburagi Y, Ueno H (2004) J Electroanal Chem 572:21CrossRefGoogle Scholar
  15. 15.
    Nemoto J, Sakata M, Hoshi T, Ueno H, Kaneko M (2007) J Electroanal Chem 599:23CrossRefGoogle Scholar
  16. 16.
    Dholam R, Patel N, Adami M, Miotello A (2008) Int J Hydrogen Energy 33:6896CrossRefGoogle Scholar
  17. 17.
    Canterino M, Di Somma I, Marotta R, Andreozzi R, Caprio V (2009) Water Res 43:2710CrossRefGoogle Scholar
  18. 18.
    Byrne JA, Eggins BR, Byers W, Brown NMD (1999) Appl Catal B Environ 20:L85CrossRefGoogle Scholar
  19. 19.
    Byrne JA, Davidson A, Dunlop PSM, Eggins BR (2002) J Photochem Photobiol A Chem 148:365CrossRefGoogle Scholar
  20. 20.
    Enright P (2009) PhD thesis, Dublin Institute of TechnologyGoogle Scholar
  21. 21.
    Serpone N, Texier I, Emeline AV, Pichat P, Hidaka H, Zhao J (2000) J Photochem Photobiol A Chem 136:145CrossRefGoogle Scholar
  22. 22.
    Rothenberger G, Fitzmaurice D, Grätzel M (1992) J Phys Chem 96:5983CrossRefGoogle Scholar
  23. 23.
    Hagfeldt A, Grätzel M (1995) Chem Rev 95:49CrossRefGoogle Scholar
  24. 24.
    Verma A, Basu S (2005) J Power Sources 145:282CrossRefGoogle Scholar
  25. 25.
    Dinsdale RM, Hawkes FR, Hawkes DL (2000) Water Res 34:2433CrossRefGoogle Scholar
  26. 26.
    Chou S, Huang YH, Lee SN, Huang GH, Huang C (1998) Water Res 33:751CrossRefGoogle Scholar
  27. 27.
    Davis AP, Green DL (1999) Environ Sci Technol 33:609CrossRefGoogle Scholar
  28. 28.
    Ferrer JE, Victori LI (1993) Electrochim Acta 38:1631CrossRefGoogle Scholar
  29. 29.
    Lović JD, Tripković AV, Gojković SLj, Popović KDj, Tripković DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294CrossRefGoogle Scholar
  30. 30.
    Jovanović VM, Tripković D, Tripković A, Kowal A, Stoch J (2005) Electrochem Commun 7:1039CrossRefGoogle Scholar
  31. 31.
    Xuguang Li, Hsing I-Ming (2006) Electrochim Acta 51:3477CrossRefGoogle Scholar
  32. 32.
    Wang Xin, Ji-Ming Hu, Hsing I-Ming (2004) J Electroanal Chem 562:73CrossRefGoogle Scholar
  33. 33.
    Macia MD, Herrero E, Feliu JM (2003) J Electroanal Chem 554:25CrossRefGoogle Scholar
  34. 34.
    Tian M, Conway BE (2005) J Electroanal Chem 581:176CrossRefGoogle Scholar
  35. 35.
    Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A Chem 189:258CrossRefGoogle Scholar
  36. 36.
    Koelsch M, Cassaignon S, Ta Thanh Minh C, Guillemoles JF, Jolivet JP (2004) Thin Solid Films 451:86CrossRefGoogle Scholar
  37. 37.
    Chung-Chieh C, Chung-Kwei L, Chih-Chieh C, Chao-Sheng H, Chin-Yi C (2006) Thin Solid Films 494:274CrossRefGoogle Scholar
  38. 38.
    Tryba B, Morawski AW, Inagaki M, Toyoda M (2006) Appl Catal B Environ 63:215CrossRefGoogle Scholar
  39. 39.
    Balasubramanian G, Dionysiou D, Suidan MT, Baudin I, Laine J-M (2004) Appl Catal B Environ 47:73CrossRefGoogle Scholar
  40. 40.
    Joon-Chui L, Moon-Sun K, Byung-Woo K (2002) Water Res 36:1776CrossRefGoogle Scholar
  41. 41.
    Vinodgopal K, Hotchandani S, Kamat PV (1993) J Phys Chem 97:9040CrossRefGoogle Scholar
  42. 42.
    Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Appl Catal B Environ 17:25CrossRefGoogle Scholar
  43. 43.
    Plieth W (2008) Oxides and semiconductors. In: Electrochemistry for materials science, 1st edn. Elsevier, Amsterdam, p268Google Scholar
  44. 44.
    Santos A, Yustos P, Quintanilla A, Rodriguez S, Garcia-Ochoa F (2002) Appl Catal B Environ 39:97CrossRefGoogle Scholar
  45. 45.
    Duffy EF, Al Touati F, Kehoe SC, McLoughlin OA, Gill LW, Gernjak W, Oller I, Maldonado MI, Malato S, Cassidy J, Reed RH, McGuigan KG (2004) Sol Energy 77:649CrossRefGoogle Scholar
  46. 46.
    O’Connell PJ, Gormally C, Pravda M, Guilbault G (2001) Anal Chim Acta 431:239CrossRefGoogle Scholar
  47. 47.
    Li J, Peter LM, Potter R (1983) J Appl Electrochem 14:495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Chemical and Pharmaceutical SciencesDublin Institute of TechnologyDublinIreland
  2. 2.FOCAS, Dublin Institute of TechnologyDublinIreland
  3. 3.Directorate of Research and EnterpriseDublin Institute of TechnologyDublinIreland

Personalised recommendations