Journal of Applied Electrochemistry

, Volume 40, Issue 12, pp 2193–2202 | Cite as

A new class of Sol–gel derived LiM1xM2yMn2−x−yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes for lithium batteries

  • N. Jayaprakash
  • N. Kalaiselvi
  • C. H. Doh
  • Gangulibabu
  • D. Bhuvaneswari
Original Paper


A series of LiM1xM2yMn2−x−yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes, viz., LiMn2O3.8F0.2, LiCr0.2Mn1.8O3.8F0.2 and LiCr0.2V0.2Mn1.6O3.8F0.2 along with native LiMn2O4 have been synthesized by Citric Acid assisted Modified (CAM) sol–gel method, with a view to understand the effect of synthesis methodology and the effect of dual category dopants, viz., anion and/or cation upon spinel cathodes individually. An acceptable capacity retention (94%) observed up to 50 cycles for native LiMn2O4 cathodes is attributed to the significance of CAM sol–gel method. Similarly, the encouraging charge–discharge results of LiMn2O3.8F0.2 (130 mAh g−1) and LiCr0.2Mn1.8O3.8F0.2 (142 mAh g−1) cathodes revealed a possible augmentation in the reversible capacity behavior of the spinels upon F substitution at 32e site and the simultaneous substitution of Cr3+ and F at 16d and 32e sites respectively.


LiMn2O4 cathodes Cation and anion doping MAS 7Li-NMR Specific capacity Lithium batteries 



The authors are thankful to the Department of Science and Technology (DST), New Delhi for financial support to carry out this work.


  1. 1.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461CrossRefGoogle Scholar
  2. 2.
    Thackeray MM, Shao-Horn Y, Kahaian AJ, Kepler KD, Skinner E, Vaughey JT, Hackney SA (1998) Electrochem Solid-State Lett 1:7CrossRefGoogle Scholar
  3. 3.
    Hunter JC (1981) J Solid State Chem 39:142CrossRefGoogle Scholar
  4. 4.
    Wen SJ, Richardson TJ, Ma L, Striebel KA, Ross PN, Cairns EJ (1996) J Electrochem Soc 143:L136CrossRefGoogle Scholar
  5. 5.
    Guyomard D, Tarascon JM (1994) Solid State Ion 69:222CrossRefGoogle Scholar
  6. 6.
    Tarascon JM, McKinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) J Electrochem Soc 141:1421CrossRefGoogle Scholar
  7. 7.
    Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593CrossRefGoogle Scholar
  8. 8.
    Lee JH, Hong JK, Jang DH, Sun YK, Oh SM (2001) J Power Sources 89:7CrossRefGoogle Scholar
  9. 9.
    Hyung-Wook Ha, Yun NanJi, Kim Keon (2007) Electrochim Acta 52:3236CrossRefGoogle Scholar
  10. 10.
    Julien C, Ziolkiewicz S, Lemal M, Massot M (2001) J Mater Chem 11:1837CrossRefGoogle Scholar
  11. 11.
    Xu XX, Yang J, Wang YQ, Nuli YN, Wang JL (2007) J Power Sources 174:1113CrossRefGoogle Scholar
  12. 12.
    Hasegawa A, Yoshizawa K, Yamabe T (2000) J Electrochem Soc 147:4052CrossRefGoogle Scholar
  13. 13.
    Horne CR (2000) PhD Thesis, University of California, Berkeley, CAGoogle Scholar
  14. 14.
    Du G, NuLi Y, Yang J, Wang J (2008) Mater Res Bull 43:3607CrossRefGoogle Scholar
  15. 15.
    Matsumoto K, Fukutsuka T, Okumura T, Uchimoto Y, Amezawa K, Inaba M, Tasaka A (2009) J Power Sources 189:599CrossRefGoogle Scholar
  16. 16.
    He Y-S, Pei L, Liao X-Z, Ma Z-F (2007) J Fluorine Chem 128:139CrossRefGoogle Scholar
  17. 17.
    Jayaprakash N, Sathiyanarayanan K, Kalaiselvi N (2007) Electrochim Acta 52:2453CrossRefGoogle Scholar
  18. 18.
    Kalaiselvi N, Doh C-H, Park C-W, Moon S-I, Yun M-S (2004) Electrochem Commun 6:1110CrossRefGoogle Scholar
  19. 19.
    Jayaprakash N, Kalaiselvi N (2007) Electrochem Commun 9:620CrossRefGoogle Scholar
  20. 20.
    Grey CP, Lee YJ (2003) Solid State Sci 5:883CrossRefGoogle Scholar
  21. 21.
    Grey CP, Greenbaum SG (2002) MRS Bull 27:613Google Scholar
  22. 22.
    Morgan KR, Collier S, Burns G, Ooi K (1994) J Chem Soc Chem Commun 1719Google Scholar
  23. 23.
    Lee YJ, Wang F, Grey CP (1998) J Am Chem Soc 120:12601CrossRefGoogle Scholar
  24. 24.
    Thackeray MM, de Kock A, David WIF (1993) Mater Res Bull 28:1041CrossRefGoogle Scholar
  25. 25.
    Oka H, Kasahara S, Okada T, Iwata E, Okada M, Shoji T, Ohki H, Okuda T (2001) Solid State Ion 144:19CrossRefGoogle Scholar
  26. 26.
    Tucker MC, Kroeck L, Reimer JA, Cairns EJ (2002) J Electrochem Soc 149:A1409CrossRefGoogle Scholar
  27. 27.
    Kalyani P, Kalaiselvi N, Renganathan NG (2005) Mater Chem Phys 90:196CrossRefGoogle Scholar
  28. 28.
    Chitrakar R, Kanoh H, Makita Y, Miyai Y, Ooi K (2000) J Mater Chem 10:2325CrossRefGoogle Scholar
  29. 29.
    Tang SB, Lai MO, Lu L (2007) J Power Sources 164:372CrossRefGoogle Scholar
  30. 30.
    Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) J Electrochem Soc 143:1821CrossRefGoogle Scholar
  31. 31.
    Rougier A, Striebel KA, Wen SJ, Cairns EJ (1998) J Electrochem Soc 145:2975CrossRefGoogle Scholar
  32. 32.
    Tang SB, Lai MO, Lu L (2006) Electrochim Acta 52:1161CrossRefGoogle Scholar
  33. 33.
    Fu YP, Su YH, Wu SH, Lin CH (2006) J Alloys Compd 426:228CrossRefGoogle Scholar
  34. 34.
    Xia Y, Yoshio M (1996) J Electrochem Soc 143:825CrossRefGoogle Scholar
  35. 35.
    He B, Zhou WJ, Liang YY, Bao SJ, Li HL (2006) J Colloid Interface Sci 300:633CrossRefGoogle Scholar
  36. 36.
    Kalyani P, Kalaiselvi N, Muniyandi N (2002) J Power Sources 111:232CrossRefGoogle Scholar
  37. 37.
    Chiu KF, Lin HC, Lin KM, Chen CC (2006) J Electrochem Soc 153:92Google Scholar
  38. 38.
    Nieto S, Majumder SB, Katiyar RS (2004) J Power Sources 136:88CrossRefGoogle Scholar
  39. 39.
    Guohua L, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178CrossRefGoogle Scholar
  40. 40.
    Kim JS, Vaughey JT, Johnson CS, Thackeray MM (2003) J Electrochem Soc 150:A1498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N. Jayaprakash
    • 1
  • N. Kalaiselvi
    • 1
  • C. H. Doh
    • 2
  • Gangulibabu
    • 1
  • D. Bhuvaneswari
    • 1
  1. 1.Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Korea Electro Technology Research InstituteChangwonSouth Korea

Personalised recommendations