Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 11, pp 1949–1956 | Cite as

The influence of nanocrystalline state of iron on the corrosion inhibitor behavior in aqueous solution

  • Vahid Afshari
  • Changiz Dehghanian
Original Paper

Abstract

Effect of grain size reduction on the electrochemical and corrosion behavior of iron of different grain sizes (32–320 nm) produced by direct and pulsed current electrodeposition was characterized using Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The grain size of deposits was determined by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The most intensive first-order peak (110) of the XRD patterns was taken for detailed analysis using a Gaussian fitting curve. The electrochemical tests were carried out in electrolyte 30 mg L−1 NaCl + 70 mg L−1 Na2SO4 + 250 mg L−1 NaNO2 aqueous solution. It was found that the corrosion potential and corrosion current density significantly changed as the microstructure morphology was changed. Results obtained from electrochemical tests suggested that the inhibition effect and corrosion protection of sodium nitrite inhibitor in near-neutral aqueous solutions increased as the grain size decreased from submicrocrystalline to nanocrystalline. This was attributed to the excess free energy, and concomitantly the increased number of the active sites caused by higher grain boundary and triple junction content in the nanocrystalline surface, which provides sites for electrochemical activity, and effect of sodium nitrite, was more pronounced.

Keywords

Nonocrystalline Iron Inhibitor Grain size Electrodeposition Corrosion 

References

  1. 1.
    Gleiter H (1982) Mater Sci Eng 52:91–131CrossRefGoogle Scholar
  2. 2.
    Gleiter H (1995) Nanostruct Mater 6(1–4):3–14CrossRefGoogle Scholar
  3. 3.
    Gleiter H (2000) Acta Mater 48:1–29CrossRefGoogle Scholar
  4. 4.
    Tjong SC, Chen H (2004) J Mater Sci Eng 45(1–2):1–88Google Scholar
  5. 5.
    Szpunar B, Aus M, Cheung C, Erb U, Palumbo G, Szpunar JA (1998) J Magn Magn Mater 187(3):325–336CrossRefGoogle Scholar
  6. 6.
    Wolf H, Guan Z, Lauer S, Natter H, Schmelzer M, Hempelmann R, Wichert T (2000) Mech Alloy Nanocryst Mater 343(3):847–852Google Scholar
  7. 7.
    Zahi S, Hashim M, Daud AR (2004) J Magn Magn Mater 308(2):177–182CrossRefGoogle Scholar
  8. 8.
    Wang XY, Li DY (2003) Wear 255(7–12):836–845CrossRefGoogle Scholar
  9. 9.
    Wang XY, Li DY (2002) Electrochim Acta 47(24):3939–3947CrossRefGoogle Scholar
  10. 10.
    Inturi RB, Szklarska-Smialowski Z (1992) Corrosion 48(5):398–403CrossRefGoogle Scholar
  11. 11.
    Raja KS, Namjoshi SA, Misra M (2005) Mater Lett 59:570–574CrossRefGoogle Scholar
  12. 12.
    Kh MS, Youssef CC, Koch PS, Fedkiw (2004) Corros Sci 46(1):51–64CrossRefGoogle Scholar
  13. 13.
    Shriram S, Mohan S, Renganathan NG, Venkatachalam R (2000) Trans Inst Met Finish 78(5):194–197Google Scholar
  14. 14.
    Rozenfeld IL (1981) Corrosion inhibitor. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, pp 281–285Google Scholar
  16. 16.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, pp 618–687Google Scholar
  17. 17.
    Jiang HG, Ruhle M, Lavernia EJ (1999) J Mater Res 14:549–559CrossRefGoogle Scholar
  18. 18.
    Joseph C, Becker E, Nason A (1970) Proc Third Eur Symp Corr Ihib. Univ Ferrara, 791Google Scholar
  19. 19.
    Balyanov A, Kutnyakova J, Amirkhanova NA (2004) Scripta Mater 51:225CrossRefGoogle Scholar
  20. 20.
    Greer AL (1993) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Springer, New York, pp 53–77Google Scholar
  21. 21.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346CrossRefGoogle Scholar
  22. 22.
    Lopez N, Norskov JK (2003) Abs Paper Am Chem Soc 225:U688–U688Google Scholar
  23. 23.
    Sommer WJ, Crne M, Weck M (2007) ACS J Surf colloids 23(24):11991–11995Google Scholar
  24. 24.
    Zhai S, Zhang Y, Shi X, Wu D, Sun YH, Shan Y, He MY (2004) Catal Lett 93:225–229CrossRefGoogle Scholar
  25. 25.
    Bowen P, Carry C (2002) Powder Technol 128:248–255CrossRefGoogle Scholar
  26. 26.
    Goujon C, Goeuriot P (2001) Mater Sci Eng A 315:180–188CrossRefGoogle Scholar
  27. 27.
    Nihara K (1991) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi. J Ceram Soc Jpn 99:974–982Google Scholar
  28. 28.
    Moretti G, Guidi F, Grion (2003) Corros Sci 46:387CrossRefGoogle Scholar
  29. 29.
    Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33CrossRefGoogle Scholar
  30. 30.
    Gohr H, Schaller J, Schiller CA (1993) Electrochim Acta 38:1961CrossRefGoogle Scholar
  31. 31.
    Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) J Appl Electrochem 30:823CrossRefGoogle Scholar
  32. 32.
    Babic-Samardzija K, Hackerman N (2006) Anti-Corros Method Mater 53(19)Google Scholar
  33. 33.
    Mohana KN, Badiea AM (2008) Corros Sci 50:2939–2947CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Metallurgy & Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations