Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 10, pp 1845–1851 | Cite as

Voltammetric determination of the critical micellar concentration of surfactants by using a boron doped diamond anode

  • Charlotte Racaud
  • Karine Groenen Serrano
  • André Savall
Original Paper

Abstract

The electrochemistry of three surfactants has been studied by voltammetry at boron doped diamond (BDD) electrode in sodium sulphate solutions. The electrochemical behaviour of these surfactants is characterized by an oxidation signal (peak or wave) situated before the electrolyte oxidation. The anodic current is found to follow a linear relation with the concentration of the surfactants; the slope decreases abruptly above the critical micellar concentration (CMC) of the surfactants. The CMC values obtained for an anionic (sodium dodecylbenzenesulfonate, SDBS), a cationic (polyoxyethylene-23-dodecyl ether, BRIJ 35) and a neutral (1-(hexadecyl)trimethylammonium bromide, CTAB) surfactant are found in good agreement with those measured by the classical technique of surface tension. This voltammetric method has the advantage not to require the use of a redox active electrochemical probe.

Keywords

Surfactants Critical micellar concentration Boron doped diamond Voltammetry 

References

  1. 1.
    Rusling JF (1994) In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Tesarova E, Tuzar Z, Nesmerak K, Bosakova Z, Gas B (2001) Talanta 54:643CrossRefGoogle Scholar
  3. 3.
    Carpena P, Aguiar J, Bernaola-Galvan P, Carnero Ruiz C (2002) Langmuir 18:6054CrossRefGoogle Scholar
  4. 4.
    Baxter-Hammond J, Powley CR, Cook KD, Nieman TA (1980) J Colloid Interface Sci 76:434CrossRefGoogle Scholar
  5. 5.
    Mukerjee P, Mysels KJ (1971) NSRDS-NBS 36. US Department of Commerce, Washington, DCGoogle Scholar
  6. 6.
    Texter J, Horch FR, Qutubuddin S, Dayalan E (1990) J Colloid Interface Sci 135:263CrossRefGoogle Scholar
  7. 7.
    Sharma R, Varade D, Bahadur P (2003) J Dispers Sci Technol 24:53CrossRefGoogle Scholar
  8. 8.
    De Smet Y, Deriemaeker L, Parloo E, Finsy R (1999) Langmuir 15:2327CrossRefGoogle Scholar
  9. 9.
    Junquera E, Tardajos G, Aicart E (1993) Langmuir 9:1213CrossRefGoogle Scholar
  10. 10.
    Nesmerak K, Nemcova I (2006) Anal Lett 39:1023CrossRefGoogle Scholar
  11. 11.
    Yeh P, Kuwana T (1976) J Electrochem Soc 123:1334CrossRefGoogle Scholar
  12. 12.
    Feess H, Wendt H (1982) In: Weinberg NL, Tilak BV (eds) Technique of electroorganic synthesis, Part III Scale-up and engineering aspects. Wiley, New YorkGoogle Scholar
  13. 13.
    Mandal AB (1993) Langmuir 9:1932CrossRefGoogle Scholar
  14. 14.
    Zana R, Mackay RA (1986) Langmuir 2:109CrossRefGoogle Scholar
  15. 15.
    Liu T, Guo R, Song G (1994) J Dispers Sci Technol 20:1205Google Scholar
  16. 16.
    Pleskov YV (2000) J Anal Chem 55:1045CrossRefGoogle Scholar
  17. 17.
    Granger MC, Xu J, Strojek JW, Swain GM (1999) Anal Chim Acta 397:145CrossRefGoogle Scholar
  18. 18.
    Panizza M, Cerisola MG (2005) Electrochim Acta 51:191CrossRefGoogle Scholar
  19. 19.
    Martinez-Huitle CA, Brillas E (2008) Angew Chem Int Ed 47:1998CrossRefGoogle Scholar
  20. 20.
    Martinez-Huitle CA, Brillas E (2009) Appl Catal B 87:105CrossRefGoogle Scholar
  21. 21.
    Kraft A (2007) Int J Electrochem Sci 2:355Google Scholar
  22. 22.
    Weiss E, Groenen-Serrano K, Savall A (2007) J Appl Electrochem 37:1337CrossRefGoogle Scholar
  23. 23.
    Weiss E, Groenen-Serrano K, Savall A (2008) J Appl Electrochem 38:329CrossRefGoogle Scholar
  24. 24.
    Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis Ch (2003) J Electrochem Soc 150:D79CrossRefGoogle Scholar
  25. 25.
    Lissens G, Pieters J, Verhaege M, Pinoy L, Verstraete W (2003) Electrochim Acta 48:1655CrossRefGoogle Scholar
  26. 26.
    Panizza M, Delucchi M, Cerisola G (2005) J Appl Electrochem 35:357CrossRefGoogle Scholar
  27. 27.
    Louhichi B, Ahmadi MF, Bensalah N, Gadri A, Rodrigo MA (2008) J Hazard Mater 158:430CrossRefGoogle Scholar
  28. 28.
    Morrow GW (2001) In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Canizares P, Paz R, Saez C, Rodrigo MA (2008) Electrochim Acta 53:2144CrossRefGoogle Scholar
  30. 30.
    Weiss E, Groenen-Serrano K, Savall A (2006) J New Mater Electrochem Syst 9:249Google Scholar
  31. 31.
    Adamczyk Z, Para G, Warszynski P (1999) Langmuir 15:8383CrossRefGoogle Scholar
  32. 32.
    Matuura R, Kimizuka H, Yatsunami K (1959) Bull Chem Soc Jpn 32:646Google Scholar
  33. 33.
    Rybicki E (1991) Tenside Surf Det 28:62Google Scholar
  34. 34.
    Tajima K (1971) Bull Chem Soc Jpn 44:1767CrossRefGoogle Scholar
  35. 35.
    Nematollahi D, Akaberi N (2001) Molecules 6:639CrossRefGoogle Scholar
  36. 36.
    Larsen JW, Lynn B, Tepley LB (1976) J Org Chem 41:2968CrossRefGoogle Scholar
  37. 37.
    Bell S (1999) Measurement good practice guide no. 11. A beginner’s guide to uncertainty of measurement. Technical report, National Physical Laboratory. http://resource.npl.co.uk/cgibin/download.pl?area=npl_publications&path_name=/npl_web/pdf/mgpg11.pdf

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Charlotte Racaud
    • 1
  • Karine Groenen Serrano
    • 1
  • André Savall
    • 1
  1. 1.Laboratoire de Génie Chimique, CNRSUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations