Journal of Applied Electrochemistry

, Volume 40, Issue 6, pp 1239–1248 | Cite as

Electrokinetic remediation of gasoil contaminated soil enhanced by rhamnolipid

  • O. Gonzini
  • A. Plaza
  • L. Di Palma
  • M. C. Lobo
Original Paper


Electrokinetic remediation (EKR) has been investigated as one of the best technologies in soil remediation but its applications for organic contaminants have been limited due to low solubility of organics in water and their non-ionic nature. The use of biosurfactants may increase the remediation efficiency by increasing the solubility of organics. The purpose of the introduction of complexing substances is to enhance the EKR process forming complexes and/or increasing the electro-osmotic flow. In this study, the removal of gasoil from a soil using electrokinetic method was investigated in the presence of Rhamnolipid at various concentrations. EKR experiments were undertaken on a gasoil contaminated soil (20,000 ppm). Graphite carbon electrodes were used to provide an electrical direct current (ddp 30–60 V). Results showed that increasing the dose of Rhamnolipid, the efficiency of gasoil removal increased up to 86.7%. Moreover, the lower concentration of the gasoil observed in the liquid phase at the higher concentration of the biosurfactant clearly indicated that the Rhamnolipid addition can enhance gasoil biodegradation.


Electrokinetic Biosurfactants Contaminated soils Gasoil remediation 


  1. 1.
    Reddy K (2008) Technical challenges to In Situ remediation of polluted sites. Geotech Geol Eng. doi:  10.1007/s10706-008-9235-y
  2. 2.
    Wick LY, Shi L, Harms H (2007) Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim Acta 52:3441–3448CrossRefGoogle Scholar
  3. 3.
    Harbottle M, Sills G, Jackman S, Thompson I (2001) Movement of pentachlorophenol in unsaturated soil by electrokinetics. In: Proceedings of the Third Symposium and Status Report on Electrokinetic Remediation, Karlsruhe, Germany, April, 17, pp 1–13Google Scholar
  4. 4.
    Acar YB, Gale RJ, Alshawabkeh A, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40:117–137CrossRefGoogle Scholar
  5. 5.
    Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192CrossRefGoogle Scholar
  6. 6.
    Lagemana R, Clarke RL, Pool W (2005) Electro-reclamation, a versatile soil remediation solution. Eng Geol 77:191–201CrossRefGoogle Scholar
  7. 7.
    Lear G, Harbottle MJ, Sills G, Knowles CJ, Semple KT, Thompson IP (2007) Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ Pollut 146:139–146CrossRefGoogle Scholar
  8. 8.
    Riser-Roberts E (1998) Remediation of gasoil contaminated soils: biological, physical and chemical processes. Lewis Publisher, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Popov K, Glazkova I, Yachmenev V, Nikolayev A (2008) Electrokinetic remediation of concrete: Effect of chelating agents. Environ Pollut 153:22–28CrossRefGoogle Scholar
  10. 10.
    Cort TL, Song M, Bielefeldt AR (2002) Nonionic surfactant effects on pentachlorophenol biodegradation. Wat. Res 36:1253–1261CrossRefGoogle Scholar
  11. 11.
    U.S. Environmental Protection Agency (1995) In situ remediation technology status report: surfactant enhancements (April). U.S. Environmental Protection AgencyGoogle Scholar
  12. 12.
    Maturi K, Reddy K (2006) Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere 63:1022–1031CrossRefGoogle Scholar
  13. 13.
    Karagunduz A, Gezer A, Karasuloglu G (2007) Surfactant enhanced electrokinetic remediation of DDT from soils. Sci Total Environ 385:1–11CrossRefGoogle Scholar
  14. 14.
    Giannis A, Gidarakos E, Skouta A (2007) Application of sodium dodecyl sulphate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination 211:249–260CrossRefGoogle Scholar
  15. 15.
    Park JY, Lee HH, Kim SJ, Lee YJ, Yang JW (2007) Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. J Hazard Mater 140:230–236CrossRefGoogle Scholar
  16. 16.
    Urum K, Pekdemir T (2004) Evaluation of biosurfactants for curde oil contaminated soil washing. Chemosphere 57:1139–1150CrossRefGoogle Scholar
  17. 17.
    Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380CrossRefGoogle Scholar
  18. 18.
    Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32:1806–1812CrossRefGoogle Scholar
  19. 19.
    Urum K, Pekdemir T, Ross D, Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343CrossRefGoogle Scholar
  20. 20.
    Uysal A, Turkman A (2005) Effect of biosurfactant on 2, 4-dichlorophenol biodegradation in an activated sludge bioreactor. Process Biochemistry 40:2745–2749CrossRefGoogle Scholar
  21. 21.
    MATERIAL SAFETY DATA SHEET For BioRecOil (Idrabel Italia) JENEIL BIOSURFACTANT CO., LLC 400 N. Dekora Woods Blvd. Saukville, WI 53080Google Scholar
  22. 22.
    Ministerio de Agricultura (1994) Métodos Oficiales de Analisis de Suelos. Ministerio de Agricultura, EspañaGoogle Scholar
  23. 23.
    EPA Methods 9074 “Turbidimetric screening method for total recoverable petroleum hydrocarbons in soil”Google Scholar
  24. 24.
    P. Violante, “Metodi di analisi chimica del suolo”, in collaborazione con: International Union of Soil Science e Società Italiana della scienza del Suolo, Commissione II—Chimica del Suolo, Franco Angeli EditoreGoogle Scholar
  25. 25.
    Allison LE (1965) Organic carbon. In: Black CA, Evans DD, White JL, Ensiminger LE, Clark FE, Dinauer RC (eds) Methods of soil analysis, part 2: chemical and microbiological properties. SSSA, Madison, WI, pp 367–378Google Scholar
  26. 26.
    Walker K, Ripandelli N, Flint S (2005) Rapid enumeration of Bifidobacterium lactis in milk powders using impedance, I. Dairy J 15:183–188CrossRefGoogle Scholar
  27. 27.
    Flint SH, Brooks JD (2001) Rapid detection of Bacillus stearothermophilus using impedance-splitting. J Microbiol Methods 44:205–208CrossRefGoogle Scholar
  28. 28.
    Apte SC, Batlley GE (1994) Rapid detection of sewage contamination in marine waters using a fluorimetric assay of β-d-galactosidase activity. Sci Total Environ 141:175–180CrossRefGoogle Scholar
  29. 29.
    Directive of the European Parliament COM 2006/232Google Scholar
  30. 30.
    Steager H, Zorn R, Gregolec G, Czurda K, Borst M (2005) Soil Structure changing caused by electrokinetic process. In: Proceedings of the 5th Symposium on Electrokinetic Technology, Ferrara (Italy)Google Scholar
  31. 31.
    Lobo Bedmar MC, Pérez-Sanz A, Martínez-Iñigo MJ, Plaza Benito A (2009) Influence of coupled electrokinetic phytoremediation on soil remediation. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwaters, Chap. 20. Wiley, New York, pp 417–438CrossRefGoogle Scholar
  32. 32.
    Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449CrossRefGoogle Scholar
  33. 33.
    Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Biores Technol 51:1–12CrossRefGoogle Scholar
  34. 34.
    Rahman KSM, Banat IM, Rahman TJ, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and Rhamnolipid biosufactant. Biores Technol 81:25–32CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas Rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58(10):3276–3282Google Scholar
  36. 36.
    Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotech 54:625–633CrossRefGoogle Scholar
  37. 37.
    Noordman WH, Wachter JH, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of the hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotech 94:195–212CrossRefGoogle Scholar
  38. 38.
    Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  39. 39.
    Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • O. Gonzini
    • 1
  • A. Plaza
    • 2
  • L. Di Palma
    • 1
  • M. C. Lobo
    • 2
  1. 1.Department of Chemical Engineering Materials EnvironmentUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA)Alcalá de Henares, MadridSpain

Personalised recommendations