Journal of Applied Electrochemistry

, Volume 40, Issue 6, pp 1123–1130 | Cite as

Effect of processing fluid and initial concentration on electrokinetic removal of environmental hormone—nonylphenol (NP) from soil matrix

  • Chung-Hsuang Hung
  • Ching Yuan
  • Kun-Cho Chen
Original Paper


This study was aimed to investigate the electrokinetic removal of environmental hormone––nonylphenol (NP)––from soil matrix under potential gradient of 1 V cm−1 for 5-day treatment. The EK experiments were conducted with four processing fluids of de-ionized water, citric acid, NaOH, and methanol in a Pyrex glass cylindrical cell. Results showed that the elcetrokinetic removal efficiency of the above-mentioned processing fluid was 29, 36–38, 43–53, and 53–69%, respectively. It was found that the removal of NP in EK system was highly related to the solubility of NP in processing fluid. Approximate 88.8–94.2% of NP removal was collected in the cathode reservoir after EK treatment, which was 7.9–16.2 times greater than that collected in the anode reservoir. It was concluded that NP was mainly removed from anode to cathode by electroosmosis flow. The electrokinetic phenomenon of current density, electroosmistic permeability, and power consumption were also investigated.


Electrokinetic process Environmental hormone Nonylphenol Processing fluid Soil remediation 



This research was funded by the National Science Council of Taiwan, Grant # NSC96-2211-E-390-007. The authors were grateful to the reviewers for their valuable comments.


  1. 1.
    Bennie DT, Sullivan CA, Lee HB et al (1998) Water Qual Res J Can 33:231Google Scholar
  2. 2.
    Routledge EJ, Sumpter JP (1996) Environ Toxicol Chem 15:241CrossRefGoogle Scholar
  3. 3.
    Soto AM, Sonnenschein C, Chung KL et al (1995) Environ Health Persp 103:113CrossRefGoogle Scholar
  4. 4.
    Manzano MA, Pereles JA, Sales D et al (1999) Wat Res 33:2593CrossRefGoogle Scholar
  5. 5.
    Renner R (1997) Environ Sci Technol 31:A316CrossRefGoogle Scholar
  6. 6.
    Nevskaia DM, Guerrero-Ruiz A (2001) J Colloid Interf Sci 234:316CrossRefGoogle Scholar
  7. 7.
    Iwasaka S, Fukuhara T, Abe I et al (2002) Synthetic Met 125:207CrossRefGoogle Scholar
  8. 8.
    Neamtu M, Fritz HF (2006) Sci the Total Environ 369:295CrossRefGoogle Scholar
  9. 9.
    Chang BV, Chiang BW, Yuan SY (2007) Chemosphere 66:1857CrossRefGoogle Scholar
  10. 10.
    Yuan SY, Yu CH, Chang BV (2003) Environ Pollut 127:425CrossRefGoogle Scholar
  11. 11.
    Acar YB, Alshawabkeh AN (1993) Environ Sci Technol 27:2638CrossRefGoogle Scholar
  12. 12.
    Puppala SK, Alshawabkeh AN, Acar YB et al (1997) J Hazard Mater 55:203CrossRefGoogle Scholar
  13. 13.
    Saichek RE, Reddy KR (2003) Chemosphere 51:273CrossRefGoogle Scholar
  14. 14.
    Zhou DM, Deng CF, Cang L (2004) Chemosphere 56:265CrossRefGoogle Scholar
  15. 15.
    Reddy KR, Danda S, Saichek RE (2004) J Environ Eng.-ASCE. 130:1357CrossRefGoogle Scholar
  16. 16.
    Yuan C, Chiang TS (2008) J Hazard Mater 152:309CrossRefGoogle Scholar
  17. 17.
    Amrate S, Akretche DE, Innocent C et al (2005) Sci Total Environ 349:56CrossRefGoogle Scholar
  18. 18.
    Yuan C, Hung CH, Huang WL (2009) Separation Sci Techol 44:2284CrossRefGoogle Scholar
  19. 19.
    Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Sci Total Environ 289:97Google Scholar
  20. 20.
    Page MM, Page CL (2002) J Environ Eng 128:208CrossRefGoogle Scholar
  21. 21.
    Soto AM, Justicia H, Wray JW et al (1991) Environ Health Persp 92:167CrossRefGoogle Scholar
  22. 22.
    Jobling S, Sumpter JP (1993) Aquat Toxicol 27:361CrossRefGoogle Scholar
  23. 23.
    Sharpe RM, Fisher JS, Millar MM et al (1995) Environ Health Persp 103:1136CrossRefGoogle Scholar
  24. 24.
    Sonnenschein C, Soto AM (1998) Biochem Mol Bio 65:143Google Scholar
  25. 25.
    Petit F, Le GP, Cravedi JP et al (1997) J Mol Endocrinol 19:321CrossRefGoogle Scholar
  26. 26.
    Jobling S, Sheahan D, Osborne DA (1996) Environ Toxicol Chem 15:194Google Scholar
  27. 27.
    Shurin JB, Dodson ST (1997) Environ Toxicol Chem 16:1629Google Scholar
  28. 28.
    Canadian Environmental Protection Act (1999) Priority substances list assessment report: nonylphenol and its ethoxylatesGoogle Scholar
  29. 29.
    Ahel M, Giger W (1993) Chemophere 26:1471CrossRefGoogle Scholar
  30. 30.
    McLeese DW, Sergeant DB, Metcalfe CD et al (1980) Bull Environ Contam Toxicol 24:57CrossRefGoogle Scholar
  31. 31.
    Ahel M, Giger W (1993) Chemophere 26:1461CrossRefGoogle Scholar
  32. 32.
    Nelson DW, Sommers LE (1982) In: Page LA, Miller RH, Keeney DR (eds) Methods of soil analysis part 2. American Society of Agronomy, Madison, WI, USAGoogle Scholar
  33. 33.
    Reddy KR, Chinthamreddy S (2003) Adv Environ Res 7:353CrossRefGoogle Scholar
  34. 34.
    Kim SO, Moon SH, Kim KW et al (2002) Water Res 36:4765CrossRefGoogle Scholar
  35. 35.
    Jacobs RA, Senguin MZ, Hicks RE et al (1994) J Environ Sci Heal A29:1933CrossRefGoogle Scholar
  36. 36.
    Yuan C, Hung CH, Chen KC (2009) J Hazard Mater 171:563 CrossRefGoogle Scholar
  37. 37.
    Inumara KJ, Kiyoto J, Yamanak S (2006) Micropor Mesopor Mat 95:279CrossRefGoogle Scholar
  38. 38.
    Gent DB, Bricka RM, Alshawabkeh AN et al (2004) J Hazard Mater 110:53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Safety, Health and Environmental EngineeringNational First University of Science and TechnologyKaohsiungTaiwan, ROC
  2. 2.Department of Civil and Environmental EngineeringNational University of KaohsiungKaohsiung CityTaiwan

Personalised recommendations