Journal of Applied Electrochemistry

, Volume 40, Issue 6, pp 1079–1083 | Cite as

Chloride behaviour in electromembrane treatment of brine issued from desalination plants

Original Paper


In this work, the chloride behavior through an electrochemical treatment of brines is examined using ion exchange membranes like in electrodialysis. All experiments have been performed using solutions of NaCl before an application on real brines issued from an Algerian desalination plant. After checking oxidation parameters of chloride oxidation by electrolysis, ion exchange membrane have been introduced to control both the pH and the species migrated. The effect of current density and the membrane nature has been studied. The electrochemical treatment described in this work allows transforming the brines in useful products as NaOH, HCl and Cl2. The pH and the salt concentration are varied and the products obtained at the electrodes were identified and analyzed. It was shown that we can get chlorates according to the current density applied and the fixed pH. This fact gives rise to an economical process where valuable products can be obtained using only the chloride oxidation current. Results were linked to the Pourbaix diagram and allow the prediction of the process efficiency.


Brine Chloride Chlorate Membrane Electro-electrodialysis 



This work has been granted through the project “TASSILI MDU 699” as a cooperation between the USTHB (Algeria) and the IEM (Montpellier).


  1. 1.
    Hasson D, Lumelsky V, Greenberg G, Pinhas Y, Semiat R (2008) Desalination 230:329CrossRefGoogle Scholar
  2. 2.
    Nair MKV, Misra BM (1978) Desalination 27:59CrossRefGoogle Scholar
  3. 3.
    Zeppenfeld K (1998) GWF Gas-Wasserfach Wasser/Abwasser 139(2):86Google Scholar
  4. 4.
    Zeppenfeld K (2000) Chemie Ingenieur Technik 72(1–2):101CrossRefGoogle Scholar
  5. 5.
    Shpiz LL, Yu E, Kirshina Y, Gutnikova RI (1999) Uzbekistan Uzb Khim Zh 4:5Google Scholar
  6. 6.
    Zabolotskii VI, Reprintseva SL, Gnusin NP (1981) Zh Prikl Khim (Leningrad) 54(6):1345Google Scholar
  7. 7.
    Deslouis C, Frateur I, Maurin G, Tribollet B (1997) J Appl Electrochem 27(4):482CrossRefGoogle Scholar
  8. 8.
    Gabrielli C, Jaouhari R, Joiret G, Maurin G, Rousseau P (2003) J Electrochem Soc 150(7):478CrossRefGoogle Scholar
  9. 9.
    Devos O, Gabrielli C, Tlili MM, Tribollet B (2003) J Electrochem Soc 150(7):494CrossRefGoogle Scholar
  10. 10.
    Tlili MM, Ben Amor M, Gabrielli C, Joiret S, Maurin G, Rousseau P (2003) J Electrochem Soc 150(7):485CrossRefGoogle Scholar
  11. 11.
    Tlili MM, Ben Amor M, Gabrielli C, Tribollet B (2003) J Electrochem Soc 150(11):765CrossRefGoogle Scholar
  12. 12.
    Van Hegea K, Verhaegeb M, Verstraetea W (2004) Water Res 38:1550CrossRefGoogle Scholar
  13. 13.
    Chiang LC, Chang JE, Wen TC (1995) Water Res 29:671CrossRefGoogle Scholar
  14. 14.
    Wang P, Lau IWC, Fang HHP (2001) Environ Technol 22:373CrossRefGoogle Scholar
  15. 15.
    Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Waste Manage 20:569CrossRefGoogle Scholar
  16. 16.
    Panizza M, Bocca C, Cerisola G (2000) Water Res 34:2601CrossRefGoogle Scholar
  17. 17.
    Lin SH, Shyu CT, Sun MC (1998) Water Res 32:1059CrossRefGoogle Scholar
  18. 18.
    Maxhobandile S (2005) Master thesis, University of the Western CapeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.L.E.C. – U.E.R.C.A. – EMPBordj El-Bahri, AlgiersAlgeria
  2. 2.IEM-UMR5635Montpellier CedexFrance
  3. 3.Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of ChemistryUSTHBBab ezzouar, AlgiersAlgeria

Personalised recommendations