Advertisement

Electrochemical synthesis of coenzymes Q n by oxidation of tetramethoxy precursors

  • Maria Antonietta Sabatino
  • Giuseppe Filardo
  • Alessandro Galia
  • Onofrio Scialdone
Original Paper

Abstract

The electrochemical oxidation of tetramethoxy precursors (2) to coenzymes Q n (1) at a carbon anode was investigated both in a bench-scale batch electrochemical reactor and in a continuous recirculation reaction system equipped with a parallel-plate electrochemical divided cell. High faradic efficiency (>60%) and excellent selectivity (>90%) in coenzymes Q n were obtained in CH3CN or CH3CN/CH2Cl2 + 0.15 M Bu4NBF4 under potentiostatic or amperostatic alimentation.

Keywords

Electrosynthesis Coenzymes Qn Anodic oxidation Ubiquinones 

Notes

Acknowledgements

This work was financially supported by the Università di Palermo and by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR). Antonina Natoli is gratefully acknowledged for her support.

References

  1. 1.
    Steckhan E (2002) Electrochemistry. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, Weinheim, Electronic releaseGoogle Scholar
  2. 2.
    Scialdone O, Belfiore C, Filardo G, Galia A, Sabatino MA, Silvestri G (2005) Electrochim Acta 51:598CrossRefGoogle Scholar
  3. 3.
    Putter H (2001) In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New York, p 1259Google Scholar
  4. 4.
    Scialdone O, Galia A, Belfiore C, Filardo G, Silvestri G (2004) Ind Eng Chem Res 43:5006CrossRefGoogle Scholar
  5. 5.
    Sabatino MA, Galia A, Filardo G, Scialdone O (2007) Electrochem Commun 9:1355CrossRefGoogle Scholar
  6. 6.
    Filardo G, Galia A, Sabatino MA, Scialdone O (2007) Italian Patent RM2007 A000067Google Scholar
  7. 7.
    Sinatra ST (2001) In: Kanagan VE, Quinn PJ (eds) Coenzyme Q: molecular mechanism in health and disease. CRC Press, Boca Raton, FLGoogle Scholar
  8. 8.
    Shepherd JA, Poon WW, Myles DC, Clarke CF (1996) Tetrahedron Lett 37:2395CrossRefGoogle Scholar
  9. 9.
    Sasaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N (2005) J Biosci Bioeng 100:481CrossRefGoogle Scholar
  10. 10.
    Van Liemt WBS, Steggerda WF, Esmeijer R, Lugtenburg J (1994) Recl Trav Chim Pays-Bas 113:153Google Scholar
  11. 11.
    Lipshutz BH, Bulow G, Fernandez-Lazaro F, Kim SK, Lowe RF, Mollard P, Stevens KL (1999) J Am Chem Soc 121:11664CrossRefGoogle Scholar
  12. 12.
    Min JH, Lee JS, Yang JD, Koo S (2003) J Org Chem 68:7925CrossRefGoogle Scholar
  13. 13.
    West D (2003) United States Patent 6506915Google Scholar
  14. 14.
    Lipshutz BH, Mollard P, Pfeiffer SS, Chrisman W (2002) J Am Chem Soc 124:14282CrossRefGoogle Scholar
  15. 15.
    Lipshutz BH, Lower A, Berl B, Schein K, Wetterich F (2005) Org Lett 78:4095CrossRefGoogle Scholar
  16. 16.
    Negishi E, Liou SY, Xu C, Huo S (2002) Org Lett 4:261CrossRefGoogle Scholar
  17. 17.
    Sigma-Aldrich Catalog (2006) Sigma-Aldrich, St. Louis, p 682Google Scholar
  18. 18.
    Wheeler JW, Chung RH (1969) J Org Chem 34:1148Google Scholar
  19. 19.
    Scialdone O, Filardo G, Galia A, Mantione D, Silvestri G (1999) Acta Chem Scand 53:800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maria Antonietta Sabatino
    • 1
  • Giuseppe Filardo
    • 1
  • Alessandro Galia
    • 1
  • Onofrio Scialdone
    • 1
  1. 1.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità di PalermoPalermoItaly

Personalised recommendations