Comparison of anodic dissolution, surface brightness and surface roughness of nanocrystalline nickel coatings with conventional decorative chromium coatings

Original Paper


The effects of saccharin concentration and pulsating peak current density on corrosion behaviour, surface brightness and surface roughness of nanocrystalline nickel coatings were investigated and the results were compared with those of the conventional decorative chromium coatings. The average grain size of nanocrystalline nickel coatings was determined using X-ray diffraction patterns. Corrosion behaviour was evaluated using electrochemical impedance spectroscopy (EIS) in a 0.6 M sodium chloride solution. A gloss meter and a Suftest device were used to evaluate surface brightness and roughness. Corrosion resistance and brightness of the nanocrystalline nickel coatings increased with increasing the saccharin concentration in the bath. Moreover, brighter nanocrystalline nickel coatings were obtained with increasing the peak current density. In addition, all nanocrystalline nickel coatings were more corrosion resistant than chromium coatings. Those nanocrystalline nickel coatings with average grain sizes of less than 38 nm were brighter and had smoother surfaces than conventional decorative chromium coatings.


Nanocrystalline nickel Decorative chromium Corrosion Brightness 



The financial support for this research (grant number 86-GR-ENG-62) given to Dr. M.E. Bahrololoom by the Research Committee of Shiraz University is gratefully appreciated.


  1. 1.
    Zeng Z, Wang L, Liang A, Zhang J (2006) Electrochim Acta 52:1366CrossRefGoogle Scholar
  2. 2.
    Wang L, Gao Y, Xue Q, Liu H, Xu T (2006) Surf Coat Technol 200:3719CrossRefGoogle Scholar
  3. 3.
    Baral A, Engelken R, Stephens W, Farris J, Hannigan R (2006) Arch Environ Contam Toxicol 50:496CrossRefGoogle Scholar
  4. 4.
    Lindberg E, Hedensteirna G (1983) Arch Environ Health 38:367Google Scholar
  5. 5.
    Eskin S, Berkh O, Rogalsky G, Zahavi J (1998) Plat Surf Finish 85:79Google Scholar
  6. 6.
    Hady H, Abdel Salam OF (2008) J Appl Electrochem 38:385CrossRefGoogle Scholar
  7. 7.
    Khan E, Oduoza CF, Pearson T (2007) J Appl Electrochem 37:1375CrossRefGoogle Scholar
  8. 8.
    Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) Nanostruct Mater 11:343CrossRefGoogle Scholar
  9. 9.
    Erb U (1995) Nanostruct Mater 6:533CrossRefGoogle Scholar
  10. 10.
    Moti E, Shariat MH, Bahrololoom ME (2008) Mater Chem Phys 111:469CrossRefGoogle Scholar
  11. 11.
    Moti E, Shariat MH, Bahrololoom ME (2008) J Appl Electrochem 38:605CrossRefGoogle Scholar
  12. 12.
    Mishra R, Basu B, Balasubramaniam R (2004) Mater Sci Eng A 373:370CrossRefGoogle Scholar
  13. 13.
    Cherkaoui M, Chassaing E, Vu Quang K (1988) Surf Coat Technol 34:243CrossRefGoogle Scholar
  14. 14.
    Zimmerman AF, Clark DG, Aust AT, Erb U (2002) Mater Lett 52:85CrossRefGoogle Scholar
  15. 15.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  16. 16.
    Popova A, Christov M (2006) Corr Sci 48:3208CrossRefGoogle Scholar
  17. 17.
    Bard AJ, Falkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New YorkGoogle Scholar
  18. 18.
    Drogowska M, Bossard L, Menard H, Lasia A (1995) Mater Sci Forum 192:89CrossRefGoogle Scholar
  19. 19.
    Darper N, Smith H Jr (1981) Applied regression analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Mishra R, Balasubramaniam R (2004) Corr Sci 46:3019CrossRefGoogle Scholar
  21. 21.
    Lopez DA, Simison SN, de Sanchez SR (2003) Electrochim Acta 48:845CrossRefGoogle Scholar
  22. 22.
    El-Sherik AM, Erb U (1995) J Mater Sci 38:5743CrossRefGoogle Scholar
  23. 23.
    Yong P, Yi-chun Z, Zhao-feng Z, Yong-li H, Yan-guo L, Chang-qing S (2007) Trans Nonferr Metal Soc China 17:1225CrossRefGoogle Scholar
  24. 24.
    Mansfeld F (1986) Electrochemical methods. NACE, Houston, TXGoogle Scholar
  25. 25.
    Nakamura Y, Kaneko N, Watanabe M, Hezu H (1994) J Appl Electrochem 24:227Google Scholar
  26. 26.
    Li H, Czerwinski F, Szpunar A (1997) Nanostruct Mater 9:673CrossRefGoogle Scholar
  27. 27.
    Bayramoglu M, Onet B, Geren N (2008) J Mater Process Tech 203:277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran

Personalised recommendations