Journal of Applied Electrochemistry

, Volume 39, Issue 11, pp 2129–2141 | Cite as

Conductivity studies of sol-gel prepared BaCe0.85−xZrxY0.15O3−δ solid electrolytes using impedance spectroscopy

  • L. Doubova
  • S. Barison
  • S. Boldrini
  • M. Fabrizio
  • C. Mortalò
  • C. Pagura
Original Paper


A systematic investigation on doped barium cerate perovskites on conductivity was performed by means of ac electrochemical impedance spectroscopy technique. BaCe0.85−xZrxY0.15O3−δ powders (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by a modified sol-gel Pechini method and sintered at 1,250 °C–1,450 °C, depending on Zr content, to obtain good densities (93–97% of the theoretical ones). The measured total conductivities for these solid solutions in three different atmospheres were reported: in dry oxygen, in dry nitrogen and wet (0.5 bar H2O) hydrogen (5%H2/Ar) atmospheres. Arrhenius plots recorded in dry oxygen as well as in dry nitrogen showed some residual hydration which remained in the specimens upon initial heating. The compositions with x = 0.3 and 0.4 gave conductivities close to 10−2 S/cm in 5%H2/Ar/H2O atmosphere at 600 °C. The isothermal conductivities values showed a little variation for x from 0.2 to 0.4 between 500 and 800 °C.


Proton conductivity Sol-gel Zr-substituted BaCeO3 Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) 



This work has been supported by the “Celle a combustibile ad elettroliti polimerici e ceramici: dimostrazione di sistemi e sviluppo di nuovi materiali” FISR Project of MUR.


  1. 1.
    Iwahara H (1995) Solid State Ionics 77:289CrossRefGoogle Scholar
  2. 2.
    Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Solid State Ionics 168:299CrossRefGoogle Scholar
  3. 3.
    Kreuer KD (2003) Ann Rev Mater Res 33:333CrossRefGoogle Scholar
  4. 4.
    Kreuer KD (1999) Solid State Ionics 125:285CrossRefGoogle Scholar
  5. 5.
    Norby T (1999) Solid State Ionics 125:1CrossRefGoogle Scholar
  6. 6.
    Chiodelli G, Malavasi L, Tealdi C, Barison S, Battagliarin M, Doubova L, Fabrizio M, Mortalò C, Gerbasi R (2009) J Alloy Compd 470:477CrossRefGoogle Scholar
  7. 7.
    Glöckner R, Islam MS, Norby T (1999) Solid State Ionic 122:145CrossRefGoogle Scholar
  8. 8.
    Grover Coors W, Readey DW (2002) J Am Ceram Soc 85:2637CrossRefGoogle Scholar
  9. 9.
    Nowick AS, Du Y (1995) Solid State Ionics 77:137CrossRefGoogle Scholar
  10. 10.
    Malavasi L, Ritter C, Chiodelli G (2008) Chem Mater 20:2343CrossRefGoogle Scholar
  11. 11.
    Ma G, Matsumoto H, Iwahara H (1999) Solid State Ionics 122:237CrossRefGoogle Scholar
  12. 12.
    Haile SM, Staneff G, Ryu KH (2001) J Mater Sci 36:1149CrossRefGoogle Scholar
  13. 13.
    Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Solid State Ionics 138:91CrossRefGoogle Scholar
  14. 14.
    Pechini MP (1967) U.S. Patent 3 330:697Google Scholar
  15. 15.
    Zha S, Fu Q, Lang Y, Xia C, Meng G (2001) Solid State Ionics 47:351Google Scholar
  16. 16.
    Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Solid State Ionics 179:558CrossRefGoogle Scholar
  17. 17.
    Zuo C, Zha S, Lui M, Hatano M, Uchiyama M (2006) Adv Mater 18:3318CrossRefGoogle Scholar
  18. 18.
    Barison S, Battagliarin M, Cavallin T, Doubova L, Fabrizio M, Mortalò C, Boldrini S, Malavasi L, Gerbasi R (2008) J Mater Chem 5120Google Scholar
  19. 19.
    Barison S, Battagliarin M, Cavallin T, Daolio S, Doubova L, Fabrizio M, Mortalò C, Boldrini S, Gerbasi R (2008) Fuel cells 5:360CrossRefGoogle Scholar
  20. 20.
    Kruth A, Irvine JTS (2003) Solid State Ionics 162–163:83CrossRefGoogle Scholar
  21. 21.
    Ryu KH, Haile SM (1999) Solid State Ionics 125:355CrossRefGoogle Scholar
  22. 22.
    Barsukov E, Macdonald JR (eds) (2005) Impedance spectroscopy: theory, experiment and application. Wiley, Hoboken, New-JerseyGoogle Scholar
  23. 23.
    Fletcher JG, West AR, Irvine JTS (1995) J Electrochem Soc 142:2650CrossRefGoogle Scholar
  24. 24.
    Imashuku S, Uda T, Nose Y, Kishida K, Harada S, Innui H, Awakura Y (2008) J Electrochem Soc 155:B581CrossRefGoogle Scholar
  25. 25.
    Groover W, Swartzlander R (2005) Proceeding of the 26th Riso International Symposium on Material Science: Solid State Electrochemistry, Ed. National Laboratory, Roskilde, Denmark, p 185Google Scholar
  26. 26.
    Zhong Z (2007) Solid State Ionic 178:213CrossRefGoogle Scholar
  27. 27.
    Tao S, Irvine JTS (2007) J Solid State Chem 180:3493CrossRefGoogle Scholar
  28. 28.
    Ma G, Shimura T, Iwahara H (1999) Solid State Ionics 97:103Google Scholar
  29. 29.
    Boldrini S, Barison S, Doubova L, Mortalò C, Fabrizio M (2009) Fuel Cells (submitted)Google Scholar
  30. 30.
    Goodenough JB, Manthiram A, Kuo J-F (1993) Mater Chem Phys 35:221CrossRefGoogle Scholar
  31. 31.
    Bonanos N, Knight KS, Ellis B (1995) Solid State Ionics 79:161CrossRefGoogle Scholar
  32. 32.
    Kreuer KD, Schönherr E, Maier J (1994) State Ionics 70/71:278CrossRefGoogle Scholar
  33. 33.
    Babilo P, Uda T, Haile SM (2007) J Mater Res 22:1322CrossRefGoogle Scholar
  34. 34.
    Tian C, Chan S-W (2000) Solid State Ionics 134:89CrossRefGoogle Scholar
  35. 35.
    Lai W, Haile S (2005) J Am Ceram Soc 88:2979CrossRefGoogle Scholar
  36. 36.
    Su X-T, Yan Q-Z, Ma X-H, Zhang WF, Ge C-C (2006) Solid State Ionics 177:1041CrossRefGoogle Scholar
  37. 37.
    Duval SB, Holtappels P, Stimming U, Graule T (2008) Solid State Ionics 179:1112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • L. Doubova
    • 1
  • S. Barison
    • 1
  • S. Boldrini
    • 2
  • M. Fabrizio
    • 1
  • C. Mortalò
    • 1
  • C. Pagura
    • 1
  1. 1.Istituto per l’Energetica e le Interfasi (IENI), Consiglio Nazionale delle Ricerche (CNR)PadovaItaly
  2. 2.ISIB-CNRPadovaItaly

Personalised recommendations