Journal of Applied Electrochemistry

, Volume 39, Issue 12, pp 2397–2408 | Cite as

In situ active chlorine generation for the treatment of dye-containing effluents

  • François Zaviska
  • Patrick Drogui
  • Jean-François Blais
  • Guy Mercier
Original Paper


This study examined the possibility to remove colour causing-compounds from synthetic effluent by indirect electrochemical oxidation using iridium oxide anode electrodes. Using a high concentration of chloride ions (17.1 mM) and various current densities, it was possible to produce high concentration of active chlorine with a specific production rate of 2.8 mg min−1 A−1. The best performance for acid methyl violet 2B dye (MV2B) decomposition was obtained using Ti/IrO2 anodes operated at a current density of 15 mA cm−2 during 40 min of treatment in the presence of 3.42 mM of chloride ions. Under these conditions, more than 99% of MV2B was removed (with a reaction rate apparent constant of 0.20 min−1), whereas COD and TOC removal were 51% and 75%, respectively. The electrolytic cell was then used for the degradation of three other synthetic dye solutions: Eosin yellowish (EOY), Trypan Blue (TRB), Acridine Orange (ACO). TRB was the most difficult dye to remove from solution with a value reaction rate constant of 0.12 min−1, compared to 0.19 min−1 and 0.24 min−1 recorded for ACO and EOY dyes, respectively. More than 99% of these dyes were removed by electrochemical oxidation.


Active chlorine Indirect electrochemical oxidation Ti/IrO2 anode Dye, Colour removal 

List of symbols


Methyl violet 2b


Eosin yellowish


Trypan blue


Acridine orange


Chemical oxygen demand


Total organic carbon


Dimensionally stable anodes


Instantaneous current efficiency


US dollar


Dye decomposition rate apparent constant


Initial concentration of dye


Concentration of dye at time t



Sincere thanks are extended to the National Sciences and Engineering Research Council of Canada for their financial contribution to this study.


  1. 1.
    Bell J, Buckley CA (2003) Water SA 29:129Google Scholar
  2. 2.
    McMullan G, Meehan C, Conneely A et al (2001) Appl Microbiol Biotechnol 56:81CrossRefGoogle Scholar
  3. 3.
    Carliell CM, Barclay SJ, Naidooo N et al (1995) Water SA 21:61Google Scholar
  4. 4.
    Bell CB (1998) Biological decolourisation of textile effluent in a nutrient removal system. M.Sc. Eng. Thesis, School of Chem. Eng., University of Natal, Durban, South AfricaGoogle Scholar
  5. 5.
    Parac-Osterman D, Grancaric AM, Sutlovic A (2004) Influence of chemical structure of dyes on decolourization effects. AIC 2004 Color and Paints, Interim Meeting of the International Color Association, pp 179–182Google Scholar
  6. 6.
    Banat IM, Nigam P, Singh D et al (1996) Bioresour Technol 58:217CrossRefGoogle Scholar
  7. 7.
    Zawlotzki Guivarch E (2004) Traitement des polluants organiques en milieux aqueux par procédé électrochimique d’oxydation avancée “Electro-Fenton”. Application à la minéralisation des colorants synthétiques. Ph.D. Thesis, Université Marne la Vallée, FranceGoogle Scholar
  8. 8.
    Chandra R (2001) J Environ Biol 22:23Google Scholar
  9. 9.
    Kodam KM, Soojhawon I, Lokhande PD et al (2005) World J Microbiol Biotechnol 21:367CrossRefGoogle Scholar
  10. 10.
    Lourenco ND, Novais JM, Pinheiro HM (2000) Water Sci Technol 42:321Google Scholar
  11. 11.
    M′endez-Paz D, Omil F, Lema JM (2005) Enzym Microb Technol 36:264CrossRefGoogle Scholar
  12. 12.
    Ramsay JA, Goode C (2004) Biotechnol Lett 26:197CrossRefGoogle Scholar
  13. 13.
    Sevimli MF, Kinaci C (2002) Water Sci Technol 45:279Google Scholar
  14. 14.
    Shah V, Bhatt M, Stopka P et al (2005) Asian J Water Environ Pollut 2:61Google Scholar
  15. 15.
    Chang MC, Shu HY, Yu HH et al (2006) J Chem Technol Biotechnol 81:1259CrossRefGoogle Scholar
  16. 16.
    Al-Kdasi A, Idris A, Saed K et al (2004) Global Nest Int J 6:222Google Scholar
  17. 17.
    Arslan-Alaton I (2003) Color Technol 119:345CrossRefGoogle Scholar
  18. 18.
    El-Ghazi I, Elamrani MK, Mansour M (2004) Toxicol Environ Chem 85:1CrossRefGoogle Scholar
  19. 19.
    Torrades F, Garcia-Montano J, Garcia-Hortal JA et al (2004) Coloration Technol 120:188CrossRefGoogle Scholar
  20. 20.
    Ahmed MN, Ram RN (1992) Environ Pollut 77:79CrossRefGoogle Scholar
  21. 21.
    Ben Tahar F, Ben Cheikh R, Blais JF (2004) J Environ Eng Sci 3:269CrossRefGoogle Scholar
  22. 22.
    Mutlu SH, Yetis U, Gurkan T et al (2002) Water Res 36:609CrossRefGoogle Scholar
  23. 23.
    Lin SH, Peng CF (1996) Water Res 30:587CrossRefGoogle Scholar
  24. 24.
    Ciardelli G, Ranieri N (2001) Water Res 35:567CrossRefGoogle Scholar
  25. 25.
    Golder AK, Hridaya N, Samanta AN et al (2005) J Hazard Mater B127:134CrossRefGoogle Scholar
  26. 26.
    Ibanez JG, Singh MM, Szafran Z (1998) J Chem Educ 75:1040CrossRefGoogle Scholar
  27. 27.
    Kashefialasl M, Khosravi M, Marandi R et al (2006) Int J Environ Sci Technol 2:365Google Scholar
  28. 28.
    Kobya M, Demirbas E, Can OT et al (2006) J Hazard Mater B132:183CrossRefGoogle Scholar
  29. 29.
    Abdo MSE, Al-Ameeri RS (1987) J Environ Sci Health A22:27CrossRefGoogle Scholar
  30. 30.
    Jia L, Liao J, Wang W et al (1999) Water Res 33:881CrossRefGoogle Scholar
  31. 31.
    Kuperferle MJ, Galal A, Bishop PL (2004) J Environ Eng Sci 3:223CrossRefGoogle Scholar
  32. 32.
    Grimm J, Bessarabov D, Sanderson R (1998) Desalination 115:285CrossRefGoogle Scholar
  33. 33.
    Comninellis C, Pulgarin C (1993) J Appl Electrochem 23:108CrossRefGoogle Scholar
  34. 34.
    Pulgarin C, Adler N, Peringer P et al (1994) Water Res 24:887CrossRefGoogle Scholar
  35. 35.
    Drogui P, Blais JF, Mercier G (2007) Recent Patent Eng 1:257CrossRefGoogle Scholar
  36. 36.
    Canizares P, Lobato J, Paz R et al (2005) Water Res 39:2687CrossRefGoogle Scholar
  37. 37.
    Vijayaraghavan K, Ramanujam TK, Balasubramanian N (1998) J Environ Eng 124:887CrossRefGoogle Scholar
  38. 38.
    Drogui P, Bureau MA, Blais JF et al. (2006) Electrochemical stabilization and preconditioning process for municipal and industrial sludge. Canada patent pending No. CA 2,511,091Google Scholar
  39. 39.
    Oliveira FH, Osugi ME, Paschoal FMM et al (2007) J Appl Electrochem 35:583CrossRefGoogle Scholar
  40. 40.
    Xie YF (2004) Disinfection byproducts in drinking water, formation, analysis and control. CRC Press LLC, Boca Raton, FloridaGoogle Scholar
  41. 41.
    Rudolf M, Rousar I, Krisa J (1995) J Appl Electrochem 25:155CrossRefGoogle Scholar
  42. 42.
    Kraft A, Stadelmann M, Blaschke M et al (1999) J Appl Electrochem 26:861Google Scholar
  43. 43.
    Matskevich ES, Slipchenko AV (1993) Role of surface oxygen complexes on different anodes in the electrolysis of aqueous solutions. Zh Prikl Khim 66:1493Google Scholar
  44. 44.
    Feng YJ, Cui YH, Sun LX et al (2004) Harbin Gongye Daxue Xuebao 36:450Google Scholar
  45. 45.
    Zhang XD, Li WS, Lin Y (2007) Diandu Yu Tushi 26:51Google Scholar
  46. 46.
    Mousty C, Foti G, Comninellis C et al (1999) Electrochimica Acta 45:451CrossRefGoogle Scholar
  47. 47.
    Rodier J, Bazin C, Broutin JP et al (1996) L’analyse de l’eau, eaux naturelles eaux résiduaires, eau de mer, 8th edn. Donud, Paris, FranceGoogle Scholar
  48. 48.
    Bannoud AH, Persin F, Rumeau M (1993) Water Res 27:1385CrossRefGoogle Scholar
  49. 49.
    Kim S, Kim T, Park C et al (2003) Desalination 155:49CrossRefGoogle Scholar
  50. 50.
    Nagata R, Prosnansky M, Sakakibara Y (2006) J Adv Oxid Technol 9:97Google Scholar
  51. 51.
    Drogui P, Elmaleh S, Rumeau M et al (2001) J Appl Electrochem 31:877CrossRefGoogle Scholar
  52. 52.
    Panizza M, Cerisola G (2008) J Hazard Mater 153:83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • François Zaviska
    • 1
  • Patrick Drogui
    • 1
  • Jean-François Blais
    • 1
  • Guy Mercier
    • 1
  1. 1.Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement)Université du QuébecQuébecCanada

Personalised recommendations