Skip to main content
Log in

Morpholinium-based ionic liquid mixtures as electrolytes in electrochemical double layer capacitors

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Butyl-Methyl-Morpholinium bis(trifluoromethanesulphonyl)imide [ButMetMor][TFSI] and Ethyl-Methyl-Morpholinum bis(trifluoromethanesulphonyl)imide [EtMetMor][TFSI] and their mixtures with propylene carbonate (PC) were investigated as potential electrolytes in an electrochemical double layer capacitor (EDLC). Temperature dependencies of conductivity and electrochemical stability windows of ionic liquids (ILs) as well as their mixtures were determined. PC mixtures give higher conductivity with maximum ca. 1:4 (IL:PC) molar rate. Temperature dependencies of conductivity follow the Arrhenius type, showing higher energy activation for neat ILs rather than for mixtures. The EDLC was constructed based on activated carbon cloth (ACC, Kynol®) ca. 2000 m2 g−1 and IL:PC mixture giving specific capacitance of ca. 100–120 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

[EtMeMor][TFSI]:

Etyl-Methyl-Morpholinium bis(trifluoromethanesulphonyl)imide

[ButMetMor][TFSI]:

Butyl-Methyl-Morpholinium bis(trifluoromethanesulphonyl)imide

EDLC:

Electrochemical double layer capacitor

PC:

Propylene carbonate

AN:

Acetonitrile

DMSO:

Dimethylsulphoxide

DSC:

Differential scanning calorimetry

References

  1. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  2. Earle MJ, Seddon KR (2000) Pure App Chem 72:1391

    Article  CAS  Google Scholar 

  3. Wasserschied P, Keim W (2000) Angew Chem Int Ed 39:3772

    Article  Google Scholar 

  4. Ohno H (2005) Electrochemical aspects of ionic liquids. Wiley, New Jersey

    Book  Google Scholar 

  5. Galinski M, Lewandowski A, Stępniak I (2006) Electrochim Acta 51:5567

    Article  CAS  Google Scholar 

  6. Sheldon R (2001) Chem Commun 23:2399

    Article  Google Scholar 

  7. Zhao D, Wu M, Kou Y, Min E (2002) Catalysis Today 74:157

    Article  CAS  Google Scholar 

  8. Buzzeo MC, Evans RG, Compton RG (2004) ChemPhysChem 5:1106

    Article  CAS  Google Scholar 

  9. Lewandowski A, Zajder M, Frąckowiak E, Béguin F (2001) Electrochim Acta 46:2777

    Article  CAS  Google Scholar 

  10. Wasserscheid P, Welton T (2003) Ionic liquid in synthesis. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  11. Lewandowski A, Galinski M (2004) Phys Chem Solids 65:281

    Article  CAS  Google Scholar 

  12. Chiappe C, Pieraccini D (2005) J Phy Org Chem 18:275

    Article  CAS  Google Scholar 

  13. Song Y, Liu L, Zhu X, Wang X, Jia H, Xiao X, Yu H, Yang X (2008) Solid State Ion 179:516

    Article  CAS  Google Scholar 

  14. Kurzweil P, Chwistek M (2008) J Power Sources 176:555

    Article  CAS  Google Scholar 

  15. Devarajan T, Higashiya S, Dangler C, Rane-Fondacaro M, Snyder J, Haldar P (2009) Electrochem Commun 11:680

    Article  CAS  Google Scholar 

  16. Handa N, Sugimoto T, Yamagata M, Kikuta M, Kono M, Ishikawa M (2008) J Power Sources 185:1585

    Article  CAS  Google Scholar 

  17. Kim KS, Choi S, Demberelnyamba D, Lee H et al (2004) Chem Commun 2004:828

    Article  Google Scholar 

  18. Kim J, Singh RP, Shreeve JM (2004) Inorg Chem 43:2960

    Article  CAS  Google Scholar 

  19. Kim KS, Park SY, Yeon SH, Lee H (2005) Electrochim Acta 50:5673

    Article  CAS  Google Scholar 

  20. Kim KS, Park SY, Choi S, Lee H (2006) J Power Sources 155:385

    CAS  Google Scholar 

  21. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic, New York

    Google Scholar 

  22. Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus MS (2001) J Electrochem Soc 148:A1135

    Article  CAS  Google Scholar 

  23. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    Article  CAS  Google Scholar 

  24. McEwen AB, Ngo HL, LeCompte K, Goldman JL (1999) J Electrochem Soc 146:1687

    Article  CAS  Google Scholar 

  25. Nanjundiah C, McDevitt SF, Koch VR (1999) J Electrochem Soc 144(10):3392–3397

    Article  Google Scholar 

  26. Ue M, Takeda M, Toriumi A, Kominato A, Hagiwara R, Ito Y (2003) J Electrochem Soc 150:A499

    Article  CAS  Google Scholar 

  27. Sato T, Masuda G, Takagi K (2004) Electrochim Acta 49:3603

    Article  CAS  Google Scholar 

  28. Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Electrochem Commun 6:566

    Article  CAS  Google Scholar 

  29. Ue M, Takeda M (2002) Electrochemistry 70:194

    CAS  Google Scholar 

  30. Kim YJ, Matsuzawa Y, Ozaki S, Park KC, Kim C, Endo M, Yoshida H, Masuda G, Sato T, Dresselhaus MS (2005) J Electrochem Soc 152:A710

    Article  CAS  Google Scholar 

  31. Jarosik A, Krajewski SR, Lewandowski A, Radzimski P (2006) J Mol Liquids 123:43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant KBN 31-1240/T08/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Galinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinski, M., Stepniak, I. Morpholinium-based ionic liquid mixtures as electrolytes in electrochemical double layer capacitors. J Appl Electrochem 39, 1949–1953 (2009). https://doi.org/10.1007/s10800-009-9904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9904-4

Keywords

Navigation