Electrochemical characteristics of manganese oxide electrodes prepared by an immersion technique

  • Chuen-Chang Lin
  • Hung-Wei Chen
Original Paper


In order to control the amount of manganese oxide coated onto a graphite surface, immersion durations were varied. A maximum capacitance of 490 mF cm−2 was obtained in 0.5 M NaCl and using an immersion time of 20 min and a current of 1 mA. In addition, for the manganese oxide electrode, the lower the current, the higher the capacitance and the higher the immersion time, the higher the resistance. Furthermore, the chronopotentiometric (CP) charge–discharge curves were symmetrical and featured similar isosceles triangles, which demonstrate high electrochemical reversibility and good stability. Cyclic voltammograms of the manganese oxide electrode demonstrate that its operational stability is high.


Manganese oxide Immersion Chronopotentiometry Electrochemical capacitors 



Financial support by the National Science Council of the Republic of China (under grant no. NSC 93-2622-E-224-002-CC3) is gratefully acknowledged.


  1. 1.
    Conway BE (1999) Electrochemical supercapacitors—scientific fundamentals and technological applications. Kluwer Academic, New YorkGoogle Scholar
  2. 2.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483CrossRefGoogle Scholar
  3. 3.
    Chen YS, Hu CC (2003) Electrochem Solid-State Lett 6:A210CrossRefGoogle Scholar
  4. 4.
    Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419CrossRefGoogle Scholar
  5. 5.
    Hu CC, Wang CC (2003) J Electrochem Soc 150:A1079CrossRefGoogle Scholar
  6. 6.
    Park HP, Park OO, Shin KH et al (2002) Electrochem Solid-State Lett 5:H7CrossRefGoogle Scholar
  7. 7.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330CrossRefGoogle Scholar
  8. 8.
    Wu M, Snook GA, Chen GZ et al (2004) Electrochem Commun 6:499CrossRefGoogle Scholar
  9. 9.
    Burke A (2000) J Power Sources 91:37CrossRefGoogle Scholar
  10. 10.
    Chang JK, Lin CT, Tsai WT (2004) Electrochem Commun 6:666CrossRefGoogle Scholar
  11. 11.
    Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227CrossRefGoogle Scholar
  12. 12.
    Park JH, Ko JM, Park OO (2003) J Electrochem Soc 150:A864CrossRefGoogle Scholar
  13. 13.
    Zhang JR, Chen B, Li WK et al (2002) Int J Mod Phys B 16:4479CrossRefGoogle Scholar
  14. 14.
    Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6CrossRefGoogle Scholar
  15. 15.
    Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699CrossRefGoogle Scholar
  16. 16.
    Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333CrossRefGoogle Scholar
  17. 17.
    Pang SC, Anderson MA, Thomas WC (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  18. 18.
    Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19CrossRefGoogle Scholar
  19. 19.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, BrusselsGoogle Scholar
  20. 20.
    Lin CC, Yen CC (2007) J Appl Electrochem 37(7):813CrossRefGoogle Scholar
  21. 21.
    Wu BL, Lincot D, Vedel J, Yu LT (1997) J Electroanal Chem 420:159CrossRefGoogle Scholar
  22. 22.
    Pang SC, Anderson MA (2000) J Mater Res 15(10):2096CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemical & Materials EngineeringNational Yunlin University of Science and TechnologyDouliuTaiwan

Personalised recommendations