Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution

  • K. Jafarzadeh
  • T. Shahrabi
  • A. A. Oskouei
Original Paper


EIS was utilized as a novel approach to study the role of mechanical and electrochemical processes in flow accelerated pitting corrosion behaviour of AA5083-H321 aluminum–magnesium alloy in 3.5% NaCl solution. This alloy is a suitable material for manufacturing of high speed boats, submarines, desalination systems etc. Impedance spectra were obtained during 24 h of exposure of the samples to the test solution at different rotation speeds. The surface and cross section of the samples were studied by scanning electron microscopy (SEM) and EDAX analysis. The results indicated that increasing the rotation speed causes the depth of pits to increase. By further increasing the rotation speed to 5 and 7 m s−1, the flow condition causes the passive layer inside the pits to breakdown. Simultaneously, the thickness of the passive layer on the areas other than the pits becomes thinner. Shear stresses at 10 m s−1 are so severe that the passive layer on the entire surface breaks down and leads to micropitting corrosion.


Corrosion AA5083-H321 aluminum–magnesium alloy Impedance Pitting Flow 


  1. 1.
    Chester HH (1985) Mar Technol 22:155Google Scholar
  2. 2.
    Brown S (1994) Feasibility of replacing structural steel with aluminum alloy s in shipbuilding industry. Report Published by University of Viscontin at MadisonGoogle Scholar
  3. 3.
    Davis JR (1999) Corrosion of aluminum and aluminum alloys. ASM International, Materials Park, OHGoogle Scholar
  4. 4.
    Bethencourt M, Botana FJ (1998) Mater Sci Forum 289–292:567CrossRefGoogle Scholar
  5. 5.
    Barbucci A, Bruzzone G (2000) Intermetallics 8:305CrossRefGoogle Scholar
  6. 6.
    Birbilis N, Buchheit RG (2005) J Electrochem Soc 152:140CrossRefGoogle Scholar
  7. 7.
    Nisancioglu K (2004) Corrosion and protection of aluminum alloys in seawater, Eurocorr 2004Google Scholar
  8. 8.
    Ghering GA, Peterson MH (1981) Corrosion 37:232Google Scholar
  9. 9.
    Davis JA, Ghering GA (1975) Mater Perform 4:87Google Scholar
  10. 10.
    Jafarzadeh K, Shahrabi T, Hosseini MG et al (2007) J Mater Sci Technol 23:623Google Scholar
  11. 11.
    Mansfeld F (1990) Electrochim Acta 35:1533CrossRefGoogle Scholar
  12. 12.
    Macdonald DD (2006) Electrochim Acta 51:1376CrossRefGoogle Scholar
  13. 13.
    Silverman DC, Carrico JE (1988) Corrosion 44:280Google Scholar
  14. 14.
    Aballe A, Bethencourt M, Botana FJ (2001) Mater Corros 53:185CrossRefGoogle Scholar
  15. 15.
    SSPC Standards, systems and specifications (1995) Edited by Janes Rex 112Google Scholar
  16. 16.
    De Wit JH, Lenderink HJW (1996) Electrochim Acta 41:1111CrossRefGoogle Scholar
  17. 17.
    Smialowska ZS (1999) Corros Sci 41:1743CrossRefGoogle Scholar
  18. 18.
    Aballe A, Bethencourt M, Botana FJ et al (2001) Corros Sci 43:1657CrossRefGoogle Scholar
  19. 19.
    Aballe A, Bethencourt M, Botana FJ et al (2003) Corros Sci 45:161CrossRefGoogle Scholar
  20. 20.
    Frers SE, Stefenel MM, Mayer C et al (1990) J Appl Electrochem 20:996CrossRefGoogle Scholar
  21. 21.
    Jafarzadeh K, Shahrabi T, Hosseini MG et al (2008) J Mater Sci Technol 24:215Google Scholar
  22. 22.
  23. 23.
    Juttner K (1990) Electrochim Acta 35:1501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Material Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations