Journal of Applied Electrochemistry

, Volume 39, Issue 9, pp 1597–1602 | Cite as

Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates

  • Hongbo Wang
  • Qinmin Pan
  • Xiaopeng Wang
  • Geping Yin
  • Jianwei Zhao
Original Paper


NiO films for lithium-ion batteries were deposited on copper plates and foam nickel substrates by electrodeposition and subsequent heat treatment at 300 °C. At a discharge/charge rate of 0.1 C, foam NiO films delivered reversible capacity larger than 650 mAh g−1 and capacity retention over 93% after 50 cycles. NiO films deposited on foam nickel exhibited higher reversible capacity, better cyclability, as well as higher rate capability than those on copper plates. The unique three-dimensionally porous morphologies of foam NiO films were responsible for the better electrochemical performance, which provided not only high electrode/electrolyte contact area but also a good electronic conduction matrix. The present finding offers a new pathway for the large scale fabrication of high-energy-density electrodes for lithium-ion batteries.


NiO films Electrodeposition Foam nickel substrates Electrochemical performance Lithium-ion batteries 



This work was supported by Natural science foundation of China (Grant No. 50803013).


  1. 1.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496CrossRefGoogle Scholar
  2. 2.
    Arico S, Peter B, Bruno S, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366CrossRefGoogle Scholar
  3. 3.
    Wang SQ, Zhang JY, Chen CH (2007) Scr Mater 57:337CrossRefGoogle Scholar
  4. 4.
    Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) J Phys Chem B 108:5547CrossRefGoogle Scholar
  5. 5.
    Li YG, Tan B, Wu YY (2008) Chem Mater 20:567CrossRefGoogle Scholar
  6. 6.
    Oh SW, Bang HJ, Bae YC (2007) J Power Source 173:502CrossRefGoogle Scholar
  7. 7.
    Needham SA, Wang GX, Liu HK (2006) J Power Source 159:254CrossRefGoogle Scholar
  8. 8.
    Wang X, Li L, Zhang YG (2006) Cryst Growth Des 6:2163CrossRefGoogle Scholar
  9. 9.
    Yuan L, Guo ZP, Konstantinov K (2006) Electrochem Solid State Lett 9:A524CrossRefGoogle Scholar
  10. 10.
    Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM (2007) Electrochim Acta 52:4177CrossRefGoogle Scholar
  11. 11.
    Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9:1180CrossRefGoogle Scholar
  12. 12.
    Yoshio I, Tadahiko K, Akihiro M, Yukio M, Tsutomu M (1997) Science 276:1395CrossRefGoogle Scholar
  13. 13.
    Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) Adv Mater 18:69CrossRefGoogle Scholar
  14. 14.
    Pan QM, Liu J (2008) J Solid State Electrochem. doi: 10.1007/s10008-008-0740-y Google Scholar
  15. 15.
    Yu Y, Chen CH, Shui JL, Xie S (2005) Angew Chem Int Ed 44:7085CrossRefGoogle Scholar
  16. 16.
    Yu Y, Shi Y, Chen CH (2007) Nanotechnology 18:055706CrossRefGoogle Scholar
  17. 17.
    Huang XH, Tu JP, Zeng ZY, Xiang JY, Zhao XB (2008) J Electrochem Soc 155:A438CrossRefGoogle Scholar
  18. 18.
    Wang HB, Pan QM, Zhao JW, Yin GP, Zuo PJ (2007) J Power Sources 167:206CrossRefGoogle Scholar
  19. 19.
    Izaki M, Omi T (1996) J Electrochem Soc 143:L53CrossRefGoogle Scholar
  20. 20.
    Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285CrossRefGoogle Scholar
  21. 21.
    Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266CrossRefGoogle Scholar
  22. 22.
    Zhang CQ, Tu JP, Yuan YF, Huang XH, Chen XT, Mao F (2007) J Electrochem Soc 154:A65CrossRefGoogle Scholar
  23. 23.
    Tarascon M, Morcrette M, Dupont L, Chabre Y, Payen C, Larcher D, Pralong VJ (2003) J Electrochem Soc 150:A732CrossRefGoogle Scholar
  24. 24.
    Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) J Electrochem Soc 149:A627CrossRefGoogle Scholar
  25. 25.
    Huang XH, Tu JP, Xia XH, Wang XL, Xiang JY (2008) Electrochem Commun 10:1288CrossRefGoogle Scholar
  26. 26.
    Hosono E, Fujihara S, Honma I, Zhou H (2006) Electrochem Commun 8:284CrossRefGoogle Scholar
  27. 27.
    Martin CR, Mitchell DT (1999) Electroanal Chem 21:1Google Scholar
  28. 28.
    Sorensen EM, Barry SJ, Jung HK, Rondinelli JR, Vaughey JT, Poeppelmeier KR (2006) Chem Mater 18:482CrossRefGoogle Scholar
  29. 29.
    Sauvage F, Baudrin E, Gengembre L, Tarascon JM (2005) Solid State Ion 176:1869CrossRefGoogle Scholar
  30. 30.
    Pan QM, Wang M (2008) J Electrochem Soc 155:A452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hongbo Wang
    • 1
  • Qinmin Pan
    • 1
  • Xiaopeng Wang
    • 1
  • Geping Yin
    • 1
  • Jianwei Zhao
    • 2
  1. 1.School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations