Journal of Applied Electrochemistry

, Volume 39, Issue 8, pp 1369–1377 | Cite as

Electrocatalytic oxygen reduction on single-walled carbon nanotubes supported Pt alloys nanoparticles in acidic and alkaline conditions

  • Ahmad Nozad Golikand
  • Mehdi Asgari
  • Elaheh Lohrasbi
  • Mohammad Yari
Original Paper


The objective of this study is to improve the catalytic activity of platinum by alloying with transition metal (Pd) in gas diffusion electrodes (GDEs) by oxygen reduction reaction (ORR) at cathode site and comparison of the acidic and alkaline electrolytes. The high porosity of single-walled carbon nanotubes (SWCNTs) facilitates diffusion of the reactant and facilitates interaction with the Pt surface. It is also evident that SWCNTs enhance the stability of the electrocatalyst. Functionalized SWCNTs are used as a means to facilitate the uniform deposition of Pt on the SWCNT surface. The structure of SWCNTs is nearly perfect, even after functionalization, while other types of CNTs contain a significant concentration of structural defects in their walls. So catalysts supported on SWCNTs are studied in this research.

The electrocatalytic properties of ORR were evaluated by cyclic voltammetry, polarization experiments, and chronoamperometry. The morphology and elemental composition of Pt alloys were characterized by X-ray diffraction (XRD) analysis and inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The catalytic activities of the bimetallic catalysts in GDEs have been shown to be not only dependent on the composition, but also on the nature of the electrolytes. The GDEs have shown a transition from the slow ORR kinetics in alkaline electrolyte to the fast ORR kinetics in the acidic electrolyte. The results also show that introduction of Pd as transition metal in the Pt alloys provides fast ORR kinetics in both acidic and alkaline electrolytes. The performance of GDEs with Pt–Pd alloy surfaces towards the ORR as a function of the alloy’s overall composition and their behavior in acidic electrolyte was also studied. These results show that the alloy’s overall composition and also the nature of the electrolytes have a large effect on the performance of GDEs for ORR.


Platinum Alloy Oxygen reduction reaction Gas diffusion electrode Alkaline electrolyte Acid electrolyte Carbon nanotubes 


  1. 1.
    El-Deab MS, Ohsaka T (2002) Electrochem Commun 4:288–294CrossRefGoogle Scholar
  2. 2.
    Komai YJ (1998) Exp Biol 201:2359–2366Google Scholar
  3. 3.
    Andreasen A, Danscher G, Juhl S et al (1997) Neurosci Meth 72:15–27CrossRefGoogle Scholar
  4. 4.
    Osborne PG, Li XF, Li YZ et al (2001) J Neurosci Res 63:224–230CrossRefGoogle Scholar
  5. 5.
    Osborne PG (1997) Physiol Behav 61:485–492CrossRefGoogle Scholar
  6. 6.
    Tarasevich MR, Sadkowski A, Yeagar EB (1983) In: Conway BE, Bockris J.O’M, Yeagar EB, White RE (Eds.), Comprehensive treatise of electrochemistry, vol 7. Plenum Press, New York, p 301Google Scholar
  7. 7.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  8. 8.
    Adzic RR (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, p 197Google Scholar
  9. 9.
    Markovic NM, Ross PN Jr In: Wieckowski A (ed) Interfacial electrochemistry-theory, experiments and applications. Marcel Dekker, New York, p 821Google Scholar
  10. 10.
    Markovic NM, Schmidt TJ, Stamenkovic V et al (2001) Fuel Cells 1:105–116CrossRefGoogle Scholar
  11. 11.
    Adzic RR, Markovic NM (1982) J Electroanal Chem 138:443–450CrossRefGoogle Scholar
  12. 12.
    Adzic RR, Markovic NM, Vesovic VB (1984) J Electroanal Chem 165:105–112CrossRefGoogle Scholar
  13. 13.
    Markovic NM, Adzic RR, Vesovic VB (1984) J Electroanal Chem 165:121–127CrossRefGoogle Scholar
  14. 14.
    Anastasijevic NA, Dimitijevic ZM, Adzic RR (1986) Electrochim Acta 31:1125–1136CrossRefGoogle Scholar
  15. 15.
    Taylor EJ, Vilambi NRK, Gelb A (1989) J Electrochem Soc 136:1939–1949Google Scholar
  16. 16.
    Paulus UA, Vokaun A, Scherer GG et al (2002) Electrochim Acta 47:3787–3799CrossRefGoogle Scholar
  17. 17.
    Paulus UA, Vokaun A, Scherer GG et al (2002) J Phys Chem B 106:4181–4190CrossRefGoogle Scholar
  18. 18.
    Mukerjee S, Srinivasan S, Soriaga MP (1995) J Phys Chem 99:4577–4589CrossRefGoogle Scholar
  19. 19.
    Fernandez JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127:357–412CrossRefGoogle Scholar
  20. 20.
    Balbuena PB, Altomare D, Agapito LA et al (2003) J Phys Chem B 107:13671–13680CrossRefGoogle Scholar
  21. 21.
    Zhang J, Mo Y, Vukmirovic MB, Klie R et al (2004) J Phys Chem B 108:10955–10965CrossRefGoogle Scholar
  22. 22.
    Zhang J, Vukmirovic MB, Xu Y et al (2005) Angew Chem Int Ed 44:2132–2143CrossRefGoogle Scholar
  23. 23.
    Stamenkovic V, Schmidt TJ, Ross PN et al (2003) J Electroanal Chem 554–555:191–202CrossRefGoogle Scholar
  24. 24.
    Shao MH, Sasaki K, Adzic RR (2006) J Am Chem Soc 128:3526–3532CrossRefGoogle Scholar
  25. 25.
    Stamenkovic VR, Fowler B, Mun BS et al (2007) Science 315:493–497CrossRefGoogle Scholar
  26. 26.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ et al (2006) J Am Chem Soc 128:8813–8821CrossRefGoogle Scholar
  27. 27.
    Wang Y, Balbuena PB (2005) J Phys Chem B 109:18902–18910CrossRefGoogle Scholar
  28. 28.
    Sidik RA, Anderson AB (2002) J Electroanal Chem 528:69–76CrossRefGoogle Scholar
  29. 29.
    Calvo SR, Balbuena PB (2007) Surf Sci 601:165–172CrossRefGoogle Scholar
  30. 30.
    Yeager E (1986) J Mol Catal 38:5–11CrossRefGoogle Scholar
  31. 31.
    Shimizu Y, Uemura K, Matsuda H et al (1990) J Electrochem Soc 137:3430–3438CrossRefGoogle Scholar
  32. 32.
    Li N, Yan X, Zhang W et al (1998) J Power Sources 74:255–263CrossRefGoogle Scholar
  33. 33.
    Arul Raj I, Vasu KI (1990) Int J Hydrogen Energy 15:751–760CrossRefGoogle Scholar
  34. 34.
    Kannan AM, Shukla AK, Sathyanarayana S (1990) Bull Electrochem 6:273–281Google Scholar
  35. 35.
    Ross PN Jr (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley, p 465 (Chapter 31)Google Scholar
  36. 36.
    Markovic NM, Ross PN (2002) Surf Sci Rep 45:117–125CrossRefGoogle Scholar
  37. 37.
    Adzic RR (1998) Electrocatalysis. Wiley–VCH Inc., New York, p 197Google Scholar
  38. 38.
    Yang H, McCreery RL (2000) J Electrochem Soc 147:3420–3428CrossRefGoogle Scholar
  39. 39.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, London, pp 108–117Google Scholar
  40. 40.
    Iijima S (1991) Nature 354:56–62CrossRefGoogle Scholar
  41. 41.
    Ebbesen TW, Ajayan PM (1992) Nature 358:220–227CrossRefGoogle Scholar
  42. 42.
    Li WZ, Xie SS, Qian LX et al (1996) Science 274:1701–1705CrossRefGoogle Scholar
  43. 43.
    Nozad Golikand A, Lohrasbi E, Ghannadi Maragheh M (2008) J Appl Electrochem 38:869–874CrossRefGoogle Scholar
  44. 44.
    Li L, Wu G, Xu BQ (2006) Carbon 44:2973CrossRefGoogle Scholar
  45. 45.
    Antonucci PL, Alderucci V, Giordano N et al (1994) J Appl Electrochem 24:58CrossRefGoogle Scholar
  46. 46.
    Markovic NM, Gasteiger HA, Ross PN (1996) J Phys Chem 100:6715–6721CrossRefGoogle Scholar
  47. 47.
    Sirinivasan S, E.Ticianelli A, Derouin CR (1988) J Power Sources 22:359–366CrossRefGoogle Scholar
  48. 48.
    Jiang H, Zhu L, Moon KS et al (2007) Carbon 45:655–662CrossRefGoogle Scholar
  49. 49.
    Uchida Y, Aoyama Y, Eda N et al (1995) J Electrochem Soc 142:4143–4150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ahmad Nozad Golikand
    • 1
    • 2
  • Mehdi Asgari
    • 1
  • Elaheh Lohrasbi
    • 2
  • Mohammad Yari
    • 3
  1. 1.Chemistry DepartmentNSTRITehranIran
  2. 2.Corrosion Lab., Material SchoolNSTRITehranIran
  3. 3.Chemistry Department, Shahre Ghods BranchIslamic Azad UniversityShahre GhodsIran

Personalised recommendations