Skip to main content
Log in

Electrocatalytic oxygen reduction on single-walled carbon nanotubes supported Pt alloys nanoparticles in acidic and alkaline conditions

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The objective of this study is to improve the catalytic activity of platinum by alloying with transition metal (Pd) in gas diffusion electrodes (GDEs) by oxygen reduction reaction (ORR) at cathode site and comparison of the acidic and alkaline electrolytes. The high porosity of single-walled carbon nanotubes (SWCNTs) facilitates diffusion of the reactant and facilitates interaction with the Pt surface. It is also evident that SWCNTs enhance the stability of the electrocatalyst. Functionalized SWCNTs are used as a means to facilitate the uniform deposition of Pt on the SWCNT surface. The structure of SWCNTs is nearly perfect, even after functionalization, while other types of CNTs contain a significant concentration of structural defects in their walls. So catalysts supported on SWCNTs are studied in this research.

The electrocatalytic properties of ORR were evaluated by cyclic voltammetry, polarization experiments, and chronoamperometry. The morphology and elemental composition of Pt alloys were characterized by X-ray diffraction (XRD) analysis and inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The catalytic activities of the bimetallic catalysts in GDEs have been shown to be not only dependent on the composition, but also on the nature of the electrolytes. The GDEs have shown a transition from the slow ORR kinetics in alkaline electrolyte to the fast ORR kinetics in the acidic electrolyte. The results also show that introduction of Pd as transition metal in the Pt alloys provides fast ORR kinetics in both acidic and alkaline electrolytes. The performance of GDEs with Pt–Pd alloy surfaces towards the ORR as a function of the alloy’s overall composition and their behavior in acidic electrolyte was also studied. These results show that the alloy’s overall composition and also the nature of the electrolytes have a large effect on the performance of GDEs for ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Deab MS, Ohsaka T (2002) Electrochem Commun 4:288–294

    Article  CAS  Google Scholar 

  2. Komai YJ (1998) Exp Biol 201:2359–2366

    Google Scholar 

  3. Andreasen A, Danscher G, Juhl S et al (1997) Neurosci Meth 72:15–27

    Article  CAS  Google Scholar 

  4. Osborne PG, Li XF, Li YZ et al (2001) J Neurosci Res 63:224–230

    Article  CAS  Google Scholar 

  5. Osborne PG (1997) Physiol Behav 61:485–492

    Article  CAS  Google Scholar 

  6. Tarasevich MR, Sadkowski A, Yeagar EB (1983) In: Conway BE, Bockris J.O’M, Yeagar EB, White RE (Eds.), Comprehensive treatise of electrochemistry, vol 7. Plenum Press, New York, p 301

  7. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  8. Adzic RR (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, p 197

  9. Markovic NM, Ross PN Jr In: Wieckowski A (ed) Interfacial electrochemistry-theory, experiments and applications. Marcel Dekker, New York, p 821

  10. Markovic NM, Schmidt TJ, Stamenkovic V et al (2001) Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  11. Adzic RR, Markovic NM (1982) J Electroanal Chem 138:443–450

    Article  CAS  Google Scholar 

  12. Adzic RR, Markovic NM, Vesovic VB (1984) J Electroanal Chem 165:105–112

    Article  CAS  Google Scholar 

  13. Markovic NM, Adzic RR, Vesovic VB (1984) J Electroanal Chem 165:121–127

    Article  CAS  Google Scholar 

  14. Anastasijevic NA, Dimitijevic ZM, Adzic RR (1986) Electrochim Acta 31:1125–1136

    Article  CAS  Google Scholar 

  15. Taylor EJ, Vilambi NRK, Gelb A (1989) J Electrochem Soc 136:1939–1949

    Google Scholar 

  16. Paulus UA, Vokaun A, Scherer GG et al (2002) Electrochim Acta 47:3787–3799

    Article  CAS  Google Scholar 

  17. Paulus UA, Vokaun A, Scherer GG et al (2002) J Phys Chem B 106:4181–4190

    Article  CAS  Google Scholar 

  18. Mukerjee S, Srinivasan S, Soriaga MP (1995) J Phys Chem 99:4577–4589

    Article  CAS  Google Scholar 

  19. Fernandez JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127:357–412

    Article  CAS  Google Scholar 

  20. Balbuena PB, Altomare D, Agapito LA et al (2003) J Phys Chem B 107:13671–13680

    Article  CAS  Google Scholar 

  21. Zhang J, Mo Y, Vukmirovic MB, Klie R et al (2004) J Phys Chem B 108:10955–10965

    Article  CAS  Google Scholar 

  22. Zhang J, Vukmirovic MB, Xu Y et al (2005) Angew Chem Int Ed 44:2132–2143

    Article  CAS  Google Scholar 

  23. Stamenkovic V, Schmidt TJ, Ross PN et al (2003) J Electroanal Chem 554–555:191–202

    Article  Google Scholar 

  24. Shao MH, Sasaki K, Adzic RR (2006) J Am Chem Soc 128:3526–3532

    Article  CAS  Google Scholar 

  25. Stamenkovic VR, Fowler B, Mun BS et al (2007) Science 315:493–497

    Article  CAS  Google Scholar 

  26. Stamenkovic VR, Mun BS, Mayrhofer KJJ et al (2006) J Am Chem Soc 128:8813–8821

    Article  CAS  Google Scholar 

  27. Wang Y, Balbuena PB (2005) J Phys Chem B 109:18902–18910

    Article  CAS  Google Scholar 

  28. Sidik RA, Anderson AB (2002) J Electroanal Chem 528:69–76

    Article  CAS  Google Scholar 

  29. Calvo SR, Balbuena PB (2007) Surf Sci 601:165–172

    Article  CAS  Google Scholar 

  30. Yeager E (1986) J Mol Catal 38:5–11

    Article  CAS  Google Scholar 

  31. Shimizu Y, Uemura K, Matsuda H et al (1990) J Electrochem Soc 137:3430–3438

    Article  CAS  Google Scholar 

  32. Li N, Yan X, Zhang W et al (1998) J Power Sources 74:255–263

    Article  CAS  Google Scholar 

  33. Arul Raj I, Vasu KI (1990) Int J Hydrogen Energy 15:751–760

    Article  Google Scholar 

  34. Kannan AM, Shukla AK, Sathyanarayana S (1990) Bull Electrochem 6:273–281

    CAS  Google Scholar 

  35. Ross PN Jr (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley, p 465 (Chapter 31)

  36. Markovic NM, Ross PN (2002) Surf Sci Rep 45:117–125

    Article  CAS  Google Scholar 

  37. Adzic RR (1998) Electrocatalysis. Wiley–VCH Inc., New York, p 197

  38. Yang H, McCreery RL (2000) J Electrochem Soc 147:3420–3428

    Article  CAS  Google Scholar 

  39. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, London, pp 108–117

    Google Scholar 

  40. Iijima S (1991) Nature 354:56–62

    Article  CAS  Google Scholar 

  41. Ebbesen TW, Ajayan PM (1992) Nature 358:220–227

    Article  CAS  Google Scholar 

  42. Li WZ, Xie SS, Qian LX et al (1996) Science 274:1701–1705

    Article  CAS  Google Scholar 

  43. Nozad Golikand A, Lohrasbi E, Ghannadi Maragheh M (2008) J Appl Electrochem 38:869–874

    Article  Google Scholar 

  44. Li L, Wu G, Xu BQ (2006) Carbon 44:2973

    Article  CAS  Google Scholar 

  45. Antonucci PL, Alderucci V, Giordano N et al (1994) J Appl Electrochem 24:58

    Article  CAS  Google Scholar 

  46. Markovic NM, Gasteiger HA, Ross PN (1996) J Phys Chem 100:6715–6721

    Article  Google Scholar 

  47. Sirinivasan S, E.Ticianelli A, Derouin CR (1988) J Power Sources 22:359–366

    Article  Google Scholar 

  48. Jiang H, Zhu L, Moon KS et al (2007) Carbon 45:655–662

    Article  CAS  Google Scholar 

  49. Uchida Y, Aoyama Y, Eda N et al (1995) J Electrochem Soc 142:4143–4150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nozad Golikand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golikand, A.N., Asgari, M., Lohrasbi, E. et al. Electrocatalytic oxygen reduction on single-walled carbon nanotubes supported Pt alloys nanoparticles in acidic and alkaline conditions. J Appl Electrochem 39, 1369–1377 (2009). https://doi.org/10.1007/s10800-009-9812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9812-7

Keywords

Navigation