Journal of Applied Electrochemistry

, Volume 39, Issue 8, pp 1323–1330 | Cite as

One-step electrodeposition synthesis and electrochemical properties of Cu6Sn5 alloy anodes for lithium-ion batteries

  • Xiao-Yong Fan
  • Quan-Chao Zhuang
  • Guo-Zhen Wei
  • Ling Huang
  • Quan-Feng Dong
  • Shi-Gang Sun
Original Paper


Cu6Sn5 alloys were successfully electrodeposited on rough Cu foils and smooth Cu sheets using a facile one-step electrodepositing method, and their structural and electrochemical properties were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charging/discharging testing and electrochemical impedance spectroscopy (EIS). The influence of surface morphology of the current collectors on the cycleability and the interfacial performance of the Cu6Sn5 alloy electrode are both discussed. The results demonstrate that the Cu6Sn5 alloy electrode on the rough Cu foil presented better electrochemical performance than that on the smooth Cu sheet because its rough surface could buffer the volume changes to some extent. The first discharging (lithiation) and charging (delithiation) capacities were measured at 462 and 405 mAh g−1 respectively with high initial coulomb efficiency of 88%, with charging capacity in the 50th cycle remaining 76% of that in the first cycle. The phase transformation during initial lithiation was detected by electrochemical impedance spectroscopy (EIS) and its trend versus electrode potential is also discussed.


Lithium-ion battery Cu6Sn5 alloy Rough Cu foil Phase transformation EIS 



This work was financially supported by the Major State Basic Research Development “973” Program of China (2009CB220102) and National Natural Science Foundation of China (No. 20773102).


  1. 1.
    Idota Y, Kubota T, Matasufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  2. 2.
    Wang LB, Kitamur S, Sonoda T, Obat K, Tanase S, Sakaia T (2003) J Electrochem Soc 150:A1346CrossRefGoogle Scholar
  3. 3.
    Wang LB, Kitamura S, Obata K et al (2005) J Power Sources 141:286CrossRefGoogle Scholar
  4. 4.
    Shi LH, Li H, Wang ZX, Huang XJ, Chen LQ (2001) J Mater Chem 11:1502CrossRefGoogle Scholar
  5. 5.
    Li H, Shi LH, Lu W, Huang XJ, Chen LQ (2001) J Electrochem Soc 148:A915CrossRefGoogle Scholar
  6. 6.
    Tamura N, Kato Y, Mikami A, Kamino M, Matsuta S, Fujitani S (2006) J Electrochem Soc 153:A1626CrossRefGoogle Scholar
  7. 7.
    Zhang JJ, Xia YY (2006) J Electrochem Soc 153:A1466CrossRefGoogle Scholar
  8. 8.
    Kepler KD, Vaughey JT, Thackray MM (1999) J Power Sources 81–82:383CrossRefGoogle Scholar
  9. 9.
    Kepler KD, Vaughey JT, Thackray MM (1999) Electrochem Solid State Lett 2:307CrossRefGoogle Scholar
  10. 10.
    Thackray MM, Vaughey JT, Johnson CS, Kropf AJ, Benedek R, Fransson LML, Edstrom K (2003) J Power Sources 113:123Google Scholar
  11. 11.
    Larcher D, Beaulieu LY, Macneil DD, Dahn JR (2000) J Electrochem Soc 147:1658CrossRefGoogle Scholar
  12. 12.
    Beattie SD, Dahn JR (2003) J Electrochem Soc 150:A894CrossRefGoogle Scholar
  13. 13.
    Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I (2002) J Power Sources 107:48CrossRefGoogle Scholar
  14. 14.
    Pu WH, He XM, Ren JG, Wan CR, Jiang CY (2005) Electrochim Acta 50:4140CrossRefGoogle Scholar
  15. 15.
    Wolfenstine J, Campos S, Foster D, Read J, Behl WK (2002) J Power Sources 109:230CrossRefGoogle Scholar
  16. 16.
    Tamura N, Ohshita R, Fujimoto M, Kamino M, Fujitani S (2003) J Electrochem Soc 150:A679CrossRefGoogle Scholar
  17. 17.
    Arbizzani C, Lazzari M, Mastragostino M (2005) J Electrochem Soc 152:A289CrossRefGoogle Scholar
  18. 18.
    Park JW, Rajendran S, Kwon HS (2006) J Power Sources 159:1409CrossRefGoogle Scholar
  19. 19.
    Holzapfel M, Marinent A, Allion F, Lee BG, Yazami R, Montella C (2003) J Electroanal Chem 546:41CrossRefGoogle Scholar
  20. 20.
    Zhuang QC, Xu JM, Fan XY, Dong QF, Jiang YX, Huang L, Sun SG (2007) Chin Sci Bull 52:147CrossRefGoogle Scholar
  21. 21.
    Barsoukov E, Kim JH, Kim DH, Hwang KS, Yoon CO, Lee H (2000) J New Mater Electrochem Syst 3:301Google Scholar
  22. 22.
    Hong J, Wang CS, Kasavajjula U (2006) J Power Sources 162:1289CrossRefGoogle Scholar
  23. 23.
    Levi MD, Aurbach D (2007) J Solid State Electrochem 11:1031CrossRefGoogle Scholar
  24. 24.
    Bisquert J, Randriamahazaka H, Garcia-Belmonte G (2005) Electrochim Acta 51:627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Xiao-Yong Fan
    • 1
    • 2
  • Quan-Chao Zhuang
    • 2
  • Guo-Zhen Wei
    • 2
  • Ling Huang
    • 2
  • Quan-Feng Dong
    • 2
  • Shi-Gang Sun
    • 2
  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anChina
  2. 2.State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations