Advertisement

Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with [BMIM]HSO4 as additive

  • Qi Bo Zhang
  • Yi Xin Hua
  • Tie Guang Dong
  • Dan Gui Zhou
Original Paper

Abstract

The effects of temperature and current density on cathodic current efficiency, specific energy consumption, and zinc deposit morphology during zinc electrodeposition from sulfate electrolyte in the presence of 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) as additive were investigated. The highest current efficiency (93.7%) and lowest specific energy consumption (2,486 kWh t−1) were achieved at 400 A m−2 and 313 K with addition of 5 mg dm−3 [BMIM]HSO4. In addition, the temperature dependence of some kinetic parameters for the zinc electrodeposition reaction was experimentally determined. Potentiodynamic polarization sweeps were carried out to obtain the expression for each parameter as a function of temperature. In the condition studied, the exchange current density depended on temperature as ln(i 0) = −a/T + b and the charge transfer coefficient was constant. Moreover, the adsorption of the additive on cathodic surface obeyed the Langmuir adsorption isotherm. The associated thermodynamic parameters indicated the adsorption to be chemical.

Keywords

Temperature Current density Additives Zinc deposition Ionic liquids 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 50564006) and the Natural Science Foundation of Yunnan Province (Project No. 2005E0004Z).

References

  1. 1.
    Gurmen S, Emre M (2003) Minerals Eng 16:559CrossRefGoogle Scholar
  2. 2.
    Beshore AC, Flori BJ, Schade G, O’Keefe TJ (1987) J Appl Electrochem 17:765CrossRefGoogle Scholar
  3. 3.
    Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:55CrossRefGoogle Scholar
  4. 4.
    Mackinnon DJ, Brannen JM, Kerby RC (1979) J Appl Electrochem 9:71CrossRefGoogle Scholar
  5. 5.
    Ault AR, Frazer EJ (1988) J Appl Electrochem 18:583CrossRefGoogle Scholar
  6. 6.
    Muresan L, Maurin G, Oniciu L, Gaga D (1996) Hydrometallurgy 43:345CrossRefGoogle Scholar
  7. 7.
    Robinson DJ, O’Keefe TJ (1976) J Appl Electrochem 6:1CrossRefGoogle Scholar
  8. 8.
    Mackinnon DJ, Brannen JM, Fenn PL (1987) J Appl Electrochem 17:1129CrossRefGoogle Scholar
  9. 9.
    Mackinnon DJ, Morrison RM, Mouland JE, Warren PE (1990) J Appl Electrochem 20:728CrossRefGoogle Scholar
  10. 10.
    Sato R (1959) J Electrochem Soc 106:206CrossRefGoogle Scholar
  11. 11.
    Piron DL, Mathieu D, Amboise MD (1981) Can J Chem Eng 65:685CrossRefGoogle Scholar
  12. 12.
    Hosny AY (1993) Hydrometallurgy 34:361Google Scholar
  13. 13.
    Karavasteva M, Karaivanov SA (1993) J Appl Electrochem 23:763CrossRefGoogle Scholar
  14. 14.
    Karavasteva M (1994) Hydrometallurgy 35:391CrossRefGoogle Scholar
  15. 15.
    Das SC, Singh P, Hefter GT (1996) J Appl Electrochem 26:1245CrossRefGoogle Scholar
  16. 16.
    Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:738CrossRefGoogle Scholar
  17. 17.
    Tripathy BC, Das SC, Singh P, Hefter GT (1997) J Appl Electrochem 27:673CrossRefGoogle Scholar
  18. 18.
    Tripathy BC, Das SC, Singh P, Hefter GT (1999) J Appl Electrochem 29:1229CrossRefGoogle Scholar
  19. 19.
    Tripathy BC, Das SC, Hefter GT, Singh P (1998) J Appl Electrochem 28:915CrossRefGoogle Scholar
  20. 20.
    Tripathy BC, Das SC, Singh P, Hefter GT, Misra VN (2004) J Electroanal Chem 565:49CrossRefGoogle Scholar
  21. 21.
    Winand R (1991) J Appl Electrochem 21:377CrossRefGoogle Scholar
  22. 22.
    Ebrahimi F, Ahmed Z (2003) J Appl Electrochem 33:733CrossRefGoogle Scholar
  23. 23.
    Ilkhchi MO, Yoozbashizadeh H, Safarzadeh MS (2007) Chem Eng Process 46:757CrossRefGoogle Scholar
  24. 24.
    Saba AE, Elsherief AE (2000) Hydrometallurgy 54:91CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Domingnuez JA & Lew RW (1995) J Metal 47:34Google Scholar
  26. 26.
    Hosny AY (1993) Hydrometallurgy 32:261CrossRefGoogle Scholar
  27. 27.
    Lamping BA, O’Keefe TJ (1976) Met Trans B 7B:551CrossRefGoogle Scholar
  28. 28.
    Scott AC, Pitblado RM, Braton GW, Ault AR (1988) J Appl Electrochem 18:120CrossRefGoogle Scholar
  29. 29.
    Thomas BK, Fray DJ (1981) J Appl Electrochem 11:677CrossRefGoogle Scholar
  30. 30.
    Zhang QB, Hua YX (2008) Effects of 1-Butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J Appl Electrochem. doi: 10.1007/s10800-008-9665-5
  31. 31.
    Earle MJ, Seddon KR (2000) Pure Appl Chem 72:1391CrossRefGoogle Scholar
  32. 32.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156CrossRefGoogle Scholar
  33. 33.
    Whitehead JA, Lawrance GA, McCluskey A (2004) Aust J Chem 57:151CrossRefGoogle Scholar
  34. 34.
    Cifuentes L, Simpson J (2005) Chem Eng Sci 60:4915CrossRefGoogle Scholar
  35. 35.
    Cases JM, Villieras F (1992) Langmuir 8:1251CrossRefGoogle Scholar
  36. 36.
    Yurt A, Ulutas S, Dal H (2006) Appl Surf Sci 253:919CrossRefGoogle Scholar
  37. 37.
    Varvara S, Muresan L, Nicoar A, Maurin G, Popescu IC (2001) Mater Chem Phys 72:332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Qi Bo Zhang
    • 1
  • Yi Xin Hua
    • 1
  • Tie Guang Dong
    • 1
  • Dan Gui Zhou
    • 1
  1. 1.Faculty of Materials and Metallurgical EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations